Problem 1. Let F be a field of characteristic $\text{char}(F) = p > 0$, $f : V \rightarrow V$ be an endomorphism of a finite-dimensional F-vector space V.

1. If $\text{tr}(f^n) = 0$ for $1 \leq n \leq \dim_F V$ and f is not nilpotent, then $p \mid \dim_F V$.
2. Let L be a solvable Lie algebra such that $\dim_F L \leq p - 1$. Then $[L, L]$ is nilpotent.

Problem 2. Let L be a Lie algebra over F, V be a finite-dimensional irreducible L-module.

1. If $f : V \rightarrow V$ is an endomorphism of L-modules, then $f = 0$ or f is invertible. (Schur’s Lemma)
2. If F is algebraically closed, then $\text{End}_L(V) = \{ \alpha \cdot \text{id}_V : \alpha \in F \}$.
3. If F is algebraically closed and $x \in C(L)$, then there exists $\alpha(x) \in F$ such that $x.v = \alpha(x)v \ \forall \ v \in V$.

Problem 3. Let L be a finite-dimensional Lie algebra such that every finite-dimensional L-module V affords a weight space decomposition $V = \bigoplus_{\lambda \in \Lambda_M} V_\lambda$ ($\Lambda_M \subseteq \text{Map}(L, F)$) with L-invariant weight spaces V_λ. Show that L is nilpotent.

Problem 4. Suppose that $\text{char}(F) = p > 0$ and let V be an F-vector space with basis $\{ v_0, \ldots, v_{p-1} \}$.
Consider the linear maps $x, y : V \rightarrow V$, given by
$$x(v_i) := iv_{i-1} \ ; \ y(v_i) := v_{i+1} \quad 0 \leq i \leq p - 1,$$
where $v_{-1} := 0 =: v_p$.

1. Show that $\mathfrak{h} := Fx \oplus Fy \oplus F \text{id}_V$ is a nilpotent subalgebra of $\text{gl}(V)$.
2. Show that V obtains the structure of an irreducible \mathfrak{h}-module via $h.v = h(v)$ for $h \in \mathfrak{h}$ and $v \in V$.