Problem 1. Let \(L \) be a Lie algebra over \(F \), \(\varrho : L \rightarrow \mathfrak{gl}(V) \) be a finite-dimensional representation such that \(\varrho(x) \) is nilpotent for all \(x \in L \). Show that \(\kappa_{\varrho} = 0 \).

Problem 2. Let \(A \) be an associative \(F \)-algebra. An \(F \)-linear map \(D : A \rightarrow A \) is called a derivation, provided
\[
D(ab) = aD(b) + D(a)b \quad \forall a, b \in A.
\]
(1) Suppose that \(A \) is generated (as an algebra) by the subset \(S \subseteq A \). If \(D_1, D_2 : A \rightarrow A \) are derivations such that \(D_1|_S = D_2|_S \), then \(D_1 = D_2 \).

(2) Let \(A = F[X_1, \ldots, X_n] \) be a polynomial ring in \(n \) indeterminates over \(F \). Given \(i \in \{1, \ldots, n\} \), there exists a unique derivation \(\frac{\partial}{\partial X_i} : A \rightarrow A \) such that \(\frac{\partial}{\partial X_i}(X_j) = \delta_{ij} \) for \(1 \leq j \leq n \).

Problem 3. Let \(V \) be an \(F \)-vector space. We denote by \(V^\otimes n := V \otimes_F V \otimes \cdots \otimes_F V \) \((n \geq 2) \) the \(n \)-fold tensor product of \(V \) and write \(V^\otimes 1 := V \) and \(V^\otimes 0 := F \).

(1) The space \(T(V) := \bigoplus_{n \geq 0} V^\otimes n \) obtains the structure of an associative \(F \)-algebra such that
\[
(v_1 \otimes \cdots \otimes v_n) \cdot (w_1 \otimes \cdots \otimes w_m) = v_1 \otimes \cdots \otimes v_n \otimes w_1 \otimes \cdots \otimes w_m \quad v_i, w_j \in V.
\]

(2) Let \(t : V \rightarrow T(V) ; v \mapsto v \). Show that the pair \((T(V), t) \) enjoys the following universal property: For any associative \(F \)-algebra \(A \) and any linear map \(f : V \rightarrow A \), there exists a unique homomorphism \(\bar{f} : T(V) \rightarrow A \) of associative \(F \)-algebras such that \(\bar{f} \circ t = f \).

Problem 4. Suppose that \(\text{char}(F) = p > 0 \).

(1) Show that \(W(1) := \bigoplus_{i=1}^{p^2-2} F e_i \) obtains the structure of a Lie algebra via
\[
[e_i, e_j] := (j-i)e_{i+j}.
\]
Here the product is understood to be zero if \(i+j \not\in \{-1, \ldots, p-2\} \). (The algebra \(W(1) \) is called the Witt algebra.)

(2) If \(p \geq 3 \), then \(W(1) \) is simple.

(3) The Killing form \(\kappa_{W(1)} \) is non-degenerate for \(p = 3 \) and identically zero for \(p \geq 5 \).