Problem 1. Suppose that L is a finite-dimensional Lie algebra over an algebraically closed field F. Let $D : L \rightarrow L$ be a derivation. For $\alpha \in F$, we let L_α be the generalized eigenspace of D with eigenvalue α.

(1) Show that $[L_\alpha, L_\beta] \subseteq L_{\alpha+\beta}$.
(2) Let $D = S + N$ be the Jordan decomposition of D, with S being diagonalizable and N being nilpotent. Show that S and N are derivations of L.

Problem 2. Let F be an algebraically closed field of characteristic 0. Show that $M \cong M^*$ for every finite-dimensional $\mathfrak{sl}(2, F)$-module M.

Problem 3. Let $R \subseteq E$ be a root system in a Euclidean vector space E. We put $\gamma^\vee := \frac{2\gamma}{(\gamma, \gamma)}$ for all $\gamma \in E \setminus \{0\}$.

(1) Show that $R^\vee := \{ \alpha^\vee : \alpha \in R \}$ is a root system.
(2) Show that the Weyl group W^\vee of R^\vee is isomorphic to the Weyl group W of R.

Problem 4. Let L be a finite-dimensional Lie algebra over an algebraically closed field F such that every finite-dimensional L-module is semi-simple. Show that L is a semi-simple Lie algebra.