
Analysis of invariant PDO’s on the Heisenberg group
ICMS-Instructional Conference, Edinburgh 7.-13.4.1999

Detlef Müller

August 23, 2007

1 Analysis on the Heisenberg group: Basic Facts
(see e.g.[7], [24])

1.1 The Heisenberg group and its automorphisms

The Heisenberg group Hn is Rn × Rn × R, endowed with the product

(x, y, u) · (x′, y′, u′) := (x+ x′, y + y′, u+ u′ +
1

2
(x · y′ − y · x′)).

Observe:

• 0 is the neutral element of Hn

• (x, y, u)−1 = (−x,−y,−u)

• Writing z = (x, y) ∈ R2n, and regarding z as a column vector, we may regard Hn also as
R2n × R, with product

(z, u) · (z′, u′) = (z + z′, u+ u′ +
1

2
〈z, z′〉),(1.1)

where 〈 , 〉 denotes the canonical symplectic form

〈z,w〉 := tz · J · w, J =

(
0 In

−In 0

)

on R2n.

Exercise: Hn is isomorphic to the group of upper triangular matrices




1 p1 . . . pn t
1 0 q1

. . .
...

1 qn
1



, pj, qj , t ∈ R.

If ω is any symplectic bilinear form on a finite dimensional vector space V over R or C, denote
by

Sp(ω) := {T ∈ L(V, V ) : ω(Tz, Tw) = ω(z,w) ∀z,w ∈ V }(1.2)
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the corresponding symplectic group. If ω = 〈 , 〉, we also write Sp(n,R) resp. Sp(n,C) for these
groups. Notice:

T ∈ Sp(n,R) ⇐⇒ tT · J · T = J

If t 7→ T (t) is a smooth curve in Sp(ω) with T (0) = I, one finds from (1.2) that S := dT
dt (0)

satisfies

ω(Sz,w) + ω(z, Sw) = 0,(1.3)

i.e. S is skew symmetric w.r. to ω.
This shows that the Lie algebra sp(ω) of Sp(ω) consists of all linear endomorphisms S of V

satisfying (1.3). In particular,

sp(n,R) := Lie(Sp(n,R)) = {S : tSJ + JS = 0}.

The Lie bracket in sp(n,R) is just the commutator

[S1, S2] = S1S2 − S2S1.

• If T ∈ Sp(n,R), we identify T with the automorphism

T (z, u) := (Tz, u)

of Hn, so that Sp(n,R) embeds into the automorphism group Aut (Hn) of Hn.

• Further automorphisms are the (anisotropic) dilations

δr(z, u) := (rz, r2u), r > 0,

and the “Cartan involution”

θ(x, y, u) := (x,−y,−u).

Proposition 1.2 Aut (Hn) is generated by Sp(n,R), the dilations δr, the inner automorphisms
and θ.

1.2 Integration on Hn

The Lebesgue measure dg := dzdu is a bi-invariant Haar measure on Hn, i.e.
∫

Hn

f(hg) dg =

∫

Hn

f(gh) dg =

∫

Hn

f(g) dg ∀h ∈ Hn.

The convolution of two suitable functions (or distributions) f1, f2 on Hn is defined by

f1 ⋆ f2(g) :=

∫

Hn

f1(h)f2(h
−1g) dh

=

∫

Hn

f1(gh
−1)f2(h) dh.

Define the reflection at the origin and the involution of f by

f̌(g) := f(g−1) and f∗(g) := f(g−1), respectively.

Then, for ♯ = ,̌ ∗, one has (f ♯)♯ = f , and

(f1 ⋆ f2)
♯ = f ♯

2 ⋆ f
♯
1, ||f ♯||L1 = ||f ||L1 .

Notice that the group algebra L1(Hn,+, ⋆,
∗ ) is a non-commutative involutive Banach algebra.
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Remarks. (a) Identify z = (x, y) ∈ Rn ×Rn with (z1, . . . , zn) := (x1 + iy1, . . . , xn + iyn) ∈ Cn,
and call f polyradial, if f(z, u) = f̃(|z1|, . . . , |zn|, u) for some function f̃ on Rn

+ × R. Under this
identification of the underlying manifold of Hn with Cn, the n-torus Tn = {(eiϕ1 , . . . eiϕn) : ϕi ∈
[0, 2π[ } acts by (symplectic) automorphisms (z1, . . . , zn, u) 7→ (eiϕ1z1, . . . , e

iϕnzn, u) on Hn, and
f is polyradial iff f ◦ τ = f ∀τ ∈ Tn. Consequently, since

(f1 ⋆ f2) ◦ α = (f1 ◦ α) ⋆ (f2 ◦ α)

for every f1, f2 ∈ L1(Hn) and α ∈ Aut (Hn) with detDα = 1,

L1
pr(Hn) := {f ∈ L1(Hn) : f is polyradial }

forms a subalgebra of L1(Hn). Even more is true:

Proposition 1.2 L1
pr(Hn) is a commutative involutive Banach algebra.

Proof. If f ∈ L1
pr(Hn), then f̌ = f ◦ θ. Hence, for f1, f2 ∈ L1

pr(Hn),

f1 ⋆ f2 = (f̌2 ⋆ f̌1)̌ = ((f2 ◦ θ) ⋆ (f1 ◦ θ))̌
= ((f2 ⋆ f1) ◦ θ)̌ = ((f2 ⋆ f1)̌)̌ = f2 ⋆ f1.

Q.E.D.

(b) If one replaces Tn by the unitary group U(n) in this discussion, one finds in a similar way
that the radial L1-functions f , i.e. functions which depend only on |z| := (|z1|2 + . . .+ |zn|2)1/2

and u, form a commutative subalgebra L1
r (Hn) of L1(Hn).

For (z, u) ∈ Hn, define the so-called Koranyi-norm by

|(z, u)| := (|z|4 + 16u2)1/4 = ||z|2 ± 4iu|1/2.(1.4)

It has the following properties (Exercise):

(i) |δrg| = r|g| ∀g ∈ Hn, r > 0.

(ii) |g| = 0 ⇐⇒ g = 0.

(iii) |g−1| = |g|.

(iv) |g1g2| ≤ |g1| + |g2| ∀g1, g2 ∈ Hn.

In particular, | · | is a so-called homogeneous norm, and dK(g1, g2) := |g−1
1 g2| is a left-invariant

metric on Hn.

Remark 1.3 Hn, endowed with the Koranyi-metric dK and the Haar measure, forms a space
of homogeneous type in the sense of Coifman and Weiss.

Denote by
Br(g) := {h ∈ Hn : |g−1h| < r}

the open ball of radius r > 0 centered at g ∈ Hn. Then, by left-invariance and (i),

|Br(g)| = |Br(0)| = |δr(B1(0))| = rQ|B1(0)|,

where
Q = 2n + 2

is the so-called homogeneous dimension of Hn.
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1.3 Left-invariant differential operators on Hn

A linear operator T : S(Hn) → S ′(Hn) is called left respectively right - invariant, if

T (λgϕ) = λg(Tϕ) respectively T (̺gϕ) = ̺g(Tϕ)

for every g ∈ G, ϕ ∈ S, where λ and ̺ denote the left-regular and right-regular action

(λgϕ)(h) := ϕ(g−1h), (̺gϕ)(h) := ϕ(hg).

T is called homogeneous of degree α ∈ C, if

T (ϕ ◦ δr) = rα(Tϕ) ◦ δr ∀r > 0, ϕ ∈ S.

The Lie algebra hn of Hn

Identify the tangent space T0Hn with R2n ×R. For X ∈ T0Hn, let LX denote the Lie-derivative

(LXϕ)(g) :=
d

dt
ϕ(g · γ(t))|t=0,

where γ : [0, 1] → Hn is any smooth curve with γ(0) = 0, γ̇(0) = X. Then LX is a left-invariant
vector field on Hn, and the mapping X → LX is bijective from T0Hn onto the space of all
left-invariant real vector fields on Hn. In particular, the Lie bracket [ , ] on T0Hn can be defined
by

L[X,Y ] = [LX , LY ] := LXLY − LY LX .

T0Hn, endowed with [ , ], forms the Lie algebra hn of Hn. As usually, we shall henceforth
identify X ∈ hn with the corresponding Lie derivative LX .

One computes easily that a basis of hn is given by the vector fields

Xj :=
∂

∂xj
− 1

2
yj
∂

∂u
, Yj :=

∂

∂yj
+

1

2
xj

∂

∂u
, j = 1, . . . , n, and U :=

∂

∂u
.(1.5)

These satisfy the “Heisenberg commutation relations”

[Xj , Yk] = δjk U,

[Xj ,Xk] = [Yj , Yk] = 0,

[Xj , U ] = [Yj , U ] = 0.

Observe: The Xj, Yj are homogeneous of degree 1, the “central derivative” U is homogenous
of degree 2.

If n = 1, we shall often write X,Y in place of X1, Y1.

Notice that the exponential mapping exp : hn → Hn is the identity mapping.
Denote by u(hn) the associative algebra of all left-invariant differential operators on Hn.

u(hn) can be identified with the universal enveloping algebra of hn. In particular, it is generated
by the elements of hn.
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2 Local solvability
(see e.g. [9])

Let P = P (x,D) =
∑

|α|≤m
aα(x)Dα be a linear PDO on Rd of order m, where Dα = Dα1

1 . . . Dαd

d ,

Dj = 1
2πi

∂
∂xj

. Denote by

Pm(x, ξ) =
∑

|α|=m

aα(x)ξα, (x, ξ) ∈ Rd × Rd,

its principal symbol. Assume that the coefficients aα are smooth.
P is said to be locally solvable (l.s.) at x0 ∈ Rd if there exists an open neighborhood Ω of

x0, such that for every f ∈ C∞
0 (Ω) there exists a distribution u ∈ D′(Ω) solving the equation

Pu = f in Ω.(2.1)

We call P locally solvable (in Rd), if it is locally solvable at every x0 ∈ Rd.

Remark 2.1 By the theorem of Malgrange/Ehrenpreis, every constant coefficient PDO is locally
solvable.

Example 2.2 Consider the left-invariant complex vector field

Z = X + iY on H1.

This is just the famous Lewy-operator, historically the first example of a linear PDO which is
nowhere locally solvable.

Observe: A left-invariant PDO on a Lie group is l.s. at one point of the group iff it is l.s. at
every other point.

Shortly after Lewy’s example, Hörmander produced the following

Theorem 2.3 (Hörmander’s criterion) Assume there exists ξ0 ∈ Rd s.t.

(H) Pm(x0, ξ0) = 0 and {ℜePm,ℑmPm}(x0, ξ0) 6= 0,

where

{a, b} :=
d∑

j=1

(
∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

)

denotes the Poisson bracket of a and b. Then P (x,D) is not locally solvable at x0.

Recall that ξ0 is called characteristic for P at x0, if Pm(x0, ξ0) = 0.

The lengthy proof makes use of the following

Basic Lemma 2.4 The equation (2.1) can be solved in Ω if and only if the following holds true:
For every relatively compact open subset Λ ⊂ Ω (shortly: Λ ⋐ Ω) there exist constants C and

k ∈ N, s.t. for every f, v ∈ C∞
0 (Λ),

|
∫
fv dx| ≤ C

∑

|α|≤k

||Dαf ||2
∑

|β|≤k

||Dβ tPv||2(2.2)

Here, tP denotes the formal transposed of P , defined by
∫
v(Pu) dx =

∫
( tPv)u dx.
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Proof. The sufficiency of (2.2) follows by Hahn-Banach (exercise).

Conversely, if Pu = f can be solved for every f ∈ D(Ω) by some u ∈ D′(Ω), then

(∗) 〈f, v〉 =
∫
fvdx = 〈u, tPv〉 ∀v ∈ D(Λ).

Consider 〈f, v〉 as a bilinear form on C∞
0 (Λ) × C∞

0 (Λ), where C∞
0 (Λ) is a Frechet space

with the topology induced by the semi-norms ||Dαf ||2, and where C∞
0 (Λ) is endowed with the

metrizable topology induced by the semi-norms ||Dβ tPv||2.
Obviously, f 7→ 〈f, v〉 is continuous for fixed v.
The continuity of v 7→ 〈f, v〉, for fixed f , follows on the other hand by (∗).
Thus, (f, v) 7→ 〈f, v〉 is separately continuous, hence continuous, by Banach-Steinhaus. This

proves (2.2).
Q.E.D.

Remark 2.5 Condition (2.2) is equivalent to

||v||(−k) ≤ C|| tPv||(k),(2.3)

where ||f ||(α) = (
∫
(1 + |ξ|2)α|f̂(ξ)|2dξ)1/2 denotes the Sobolev-norm of order α.

Illustration of the proof of Theorem 2.3 in the case of Lewy’s operator Z

Assume w.r. that x0 = 0.
A first important step is to find, for a given characteristic ξ0 at 0 satisfying condition (H),

a complex phase function of the form

w(x) = ξ0 · x+ i tx ·A · x+O(|x|3),(2.4)

where ℜeA is a positive-definite matrix, such that, if possible,

tP (x,D)e2πiλw = 0 ∀λ≫ 1.(2.5)

(This cannot always be achieved in the strict sense, only asymptotically as λ → ∞, but a
necessary condition is that w satisfies the “eikonal equation”

Pm(x,∇w) = 0.)

If P = Z is Lewy’s operator, then one computes that the characteristic points at 0 are (0, 0, µ0),
which satisfy (H) if and only if µ0 6= 0.

A suitable phase can here be constructed directly by means of the following observation: Let

q±(z, u) := |z|2 ± 4iu(2.6)

be the expression appearing implicitely in (1.4). Then one computes that

Zq+ = 0,(2.7)

so that Z(f ◦ q+) = 0 for every holomorphic function f . Since tZ = −Z, we may thus choose w
such that

2πiw = −q+ + q2+ = −4iu− (|z|2 + 16u2) +O((|z| + |u|)3)
in (2.5), with µ0 = −2/π.

6



Given this phase, put
vλ := e2πiλwχ, fλ := λ3χ(λ·),

where χ ∈ D(H1) is supported where |z| + |u| < 2ε, and χ ≡ 1 in |z| + |u| ≤ ε. Then, as
λ→ +∞,
∫

H1

fλvλ dg =

∫ ∫
χ(z, u)χ(z/λ, u/λ)e2πiλw(z/λ,u/λ) dzdu→

∫ ∫
χ(z, u)e−4iudzdu = χ̂(0,−µ0).

On the other hand,
tZvλ = e2πiλw tZχ,

where tZχ is supported in the region where |z|+ |u| ∼ ε. If ε is sufficiently small, then, by (2.4),
ℑmw ∼ ε2 in this region, hence |e2πiλw| ∼ e−δλ, for some δ > 0. This easily implies

||fλ||(k) · || tZvλ||(k) → 0 as λ→ +∞.

Thus, if we choose χ s.t. χ̂(0,−µ0) 6= 0, we obtain a contradiction to (2.2).
Q.E.D.

Remark: In general, (2.4) cannot be satisfied exactly, and the proof becomes considerably more
involved.

For homogeneous left-invariant PDO’s on Hn, the following necessary criterion for local
solvability has proven extremely useful (analogues hold on general homogeneous groups).

Theorem 2.6 [5], [14]. Let P ∈ u(hn) be homogeneous. If P is locally solvable, then there exist
a Sobolev-norm || · ||(k) and a continuous “Schwartz-norm” || · ||S on S(Hn), s.t.

|f(0)| ≤ ||f ||1/2
S || tPf ||1/2

(k) ∀f ∈ S(Hn).(2.8)

Corollary 2.7 [5] Suppose there exists a non-trivial f ∈ S(Hn) s.t.

(CR) tPf = 0.

Then P is not locally solvable.

Proof. Let Q be an elliptic, right-invariant Laplacian on Hn, and let Ω be an open neighborhood
of 0,m ≥ 1.Then, for ϕ ∈ D(Ω), by Poincaré’s inequality and standard elliptic regularity theory,

|ϕ(0)| ≤ C ′||Qmϕ||2 ≤ C||Qm+k/2ϕ||(−k),

provided Ω is chosen sufficiently small. We choose k is as in (2.3), and assume k to be even.
Since Qm+k/2 commutes with the left-invariant operator tP , by (2.3) we have

||Qm+k/2ϕ||(−k) ≤ C||Qm+k/2 tPϕ||(k)

≤ C ′|| tPϕ||(2m+2k),

i.e. there exists a K ∈ N, C ≥ 0, s.t.

|ϕ(0)| ≤ C || tPϕ||(K) ∀ϕ ∈ D(Ω).(2.9)

Rescaling, we may assume w.r. that Ω = B2, where Br := Br(0). Let tP be homogeneous of
degree q. Choose χ ∈ D(B2) s.t. χ ≡ 1 on B1. Then, for f ∈ S, by (2.9)

|f(0)| ≤ C || tP (χ(f ◦ δr))||(K) ∀r > 0.(2.10)
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But:

tP (χ(f ◦ δr)) = χ tP (f ◦ δr) +R(f ◦ δr)
= rqχ ( tPf) ◦ δr +R(f ◦ δr),

where R = [ tP,χ] is a PDO whose coefficients are supported in {1 ≤ |x| ≤ 2}. Thus, for r ≥ 1,

|| tP (χ(f ◦ δr))||(K)

≤ CrA{|| tPf ||(K) +
∑

|α|≤N

(

∫

1<|x|<2

|f (α)(δrx)|2dx)1/2},

for some constants A > 0, N ≥ 0. Now,
∫

1<|x|<2
|f (α)(δrx)|2dx ≤ r−B

∫

1<|x|<2
|δrx|B |f (α)(δrx)|2dx

≤ r−B−Q
∫

|x|B |f (α)(x)|2dx.

Choosing B s.t. A−B −Q = −A, we find a Schwartz-norm || · ||S s.t.

|| tP (χ(f ◦ δr))||(K) ≤ C(rA|| tPf ||(K) + r−A||f ||S).

Combining this with (2.10) and optimizing in r we obtain (2.8) (if we assume w.r. that |f(0)| ≤
||f ||S).

Q.E.D.

In order to apply the “(CR)-test” from Corollary 2.7, one needs to construct functions in the
kernel of tP . Here, representation theory can help.

3 The group Fourier transform
(see e.g. [7], [4], [24])

Let G be a locally compact group and H a Hilbert space. A unitary representation of G on
H is a strongly continuous homomorphism

π : G→ U(H)

of G into the group U(H) of unitary operators on H. We shall also write Hπ in place of H, if
we want to emphasize that H is the representation space of π. Two representations π and ρ are
called equivalent, if there exists a linear isometry T from Hρ onto Hπ such that π(g)T = Tρ(g)
for every g ∈ G. π is called irreducible, if the only closed and π(G)-invariant subspaces of H are
{0} and H. The unitary dual Ĝ of G consists of all equivalence classes [π] of irreducible unitary
representations. Often one identifies Ĝ also with a system of representatives of representations.

As a consequence of the Stone-von Neumann theorem, such a system is given for the Heisen-
berg group Hn by the following irreducible representations:

(i) For µ ∈ R× := R \ {0}, the Schrödinger representation πµ acts on L2(Rn) as follows:

[πµ(p, q, u)f ](x) := e2πiµ(u+q·x+ 1
2
q·p)f(x+ p), f ∈ L2(Rn).(3.1)

(ii) For ζ ∈ R2n, the characters
ωζ(z, u) := e2πiζ·z

are 1-dimensional representations of Hn.
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The characters are the irreducible representations which act trivially on the center

Zn := {(0, 0, u) : u ∈ R}

of Hn, and they will play no role in the discussions to follow.
If π is a unitary representation of G, and if f ∈ L1(G, dg) (dg= left-invariant Haar measure),

one defines π(f) ∈ B(H) by

π(f)ξ :=

∫

G
f(g)π(g)ξ dg, ξ ∈ H.

One checks that the operator norm of π(f) satisfies ||π(f)|| ≤ ||f ||L1 , and that the following
holds true:

The “integrated” representation π is a continuous homomorphism

π : (L1(G),+, ⋆,∗ ) → (B(H),+, ◦,∗ )

of involutive Banach algebras.

For f ∈ L1(G), we define the (group-) Fourier transform of f as the mapping f̂ : Ĝ →⋃̇
π∈ĜB(Hπ), given by

f̂(π) :=

∫
f(g)π(g)∗ dg =

∫
f(g)π(g−1) dg.

Observe that for instance for G = Hn,

f̂(π) = π(f̌),

which implies

(f1 ⋆ f2)
∧(π) = f̂2(π) ◦ f̂1(π).(3.2)

On Hn, one has the following explicit Fourier-inversion formula for ”nice” functions, such
as for example Schwartz-functions:

f(g) =

∫

R×

tr(f̂(πµ)πµ(g)) |µ|n dµ, g ∈ Hn.(3.3)

The corresponding Plancherel-formula reads as follows:
∫

Hn

|f(g)|2 dg =

∫

R×

||f̂(πµ)||2HS |µ|n dµ.(3.4)

Here, trA denotes the trace of the operator A, and ||A||HS := (trA∗A)1/2 its Hilbert-Schmidt
norm.

This holds for f ∈ L2(G) in a similar sense as in the Euclidean case. For f ∈ L1 ∩ L2(G),
where f̂(πµ) is well-defined for every µ 6= 0, part of the statement is that f̂(πµ) is a Hilbert-
Schmidt-operator for a.e. µ ∈ R×.

Notice that the characters ωζ do not enter in these formulas.
Formulas (3.3) and (3.4) can be deduced from the Euclidean Fourier inversion formula as

follows:
Direct computations, based on formula (3.1), show that f̂(πµ) can be represented as a kernel

operator

(f̂(πµ)ϕ)(x) =

∫

Rn
Kµ

f (x, y)ϕ(y) dy, ϕ ∈ L2(Rn),(3.5)
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with integral kernel

Kµ
f (x, y) =

∫ ∫
f(x− y, q, u)e−2πiµ(u+ q

2
(x+y)) dqdu,(3.6)

= f(x− y,
̂µ

2
(x+ y), µ̂).

Since trf̂(πµ) =
∫
Kµ

f (x, x) dx, (3.3) follows easily (Exercise).

The Fourier transform of a differential operator

If P ∈ u(hn), then
Pϕ = P (ϕ ⋆ δ) = ϕ ⋆ (Pδ), ϕ ∈ S,

i.e. P can be represented by convolution from the right with the compactly supported distri-
bution Pδ. But from (3.6), one sees that Kµ

f is well-defined as a tempered distribution kernel

Kµ
f ∈ S ′(Rn × Rn) supported near the diagonal x = y, for every distribution f ∈ E ′(Hn) with

compact support. This implies that the integral operator (3.5), defined in the Schwartz-sense of
distributions, is well-defined on S(Rn), and

f̂(πµ) : S(Rn) → S(Rn)

is continuous for every f ∈ E ′(Hn).
For P ∈ u(hn), we now define its Fourier transform by

P̂ (πµ) := P̂ δ(πµ) := πµ((Pδ)̌).

Approximating Pδ by Pδ ⋆ ϕε ∈ D, where {ϕε}ε>0 denotes a Dirac sequence in D, one finds
from (3.2) that

P̂ϕ(πµ) = P̂ (πµ) ◦ ϕ̂(πµ), ϕ ∈ S,(3.7)

and

ÂB(πµ) = Â(πµ) ◦ B̂(πµ), ∀A,B ∈ u(hn),(3.8)

since (AB)δ = A(Bδ ⋆ δ) = Bδ ⋆ Aδ.
Since Xjδ = ∂

∂xj
δ, Yjδ = ∂

∂yj
δ, Uδ = ∂

∂uδ, we find from (3.6) that

X̂j(πµ) =
∂

∂xj
, Ŷj(πµ) = 2πiµxj , Û(πµ) = 2πiµ.(3.9)

Also, from (3.6), one sees that

Kr2µ
f◦δr

(x, y) = r−n−2Kµ
f (rx, ry), r > 0.(3.10)

If P ∈ u(hn) is homogeneous of degree q, then f = Pδ satisfies f ◦ δr = r−Q−qf , hence from
(3.10) we get

Kr2µ
Pδ (x, y) = rq+nKµ

Pδ(rx, ry).(3.11)

From Corollary 2.7, we can now deduce
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Corollary 3.1 Let P ∈ u(hn) be homogeneous, and assume there exist µ0 ∈ R× and φ ∈
S(Rn), φ 6= 0, s.t. t̂P (πµ0)φ = 0. Then P is not locally solvable.

Proof. Assume for instance µ0 > 0. For µ > 0, put

φµ(x) := φ

((
µ

µ0

)1/2

x

)
.

Then, by (3.11), t̂P (πµ)φµ = 0 ∀µ > 0. Let χ ∈ C∞
0 (R+), and put

Kµ(x, y) := χ(µ)φµ(x)φµ(y).

From (3.6), it follows that Kµ = Kµ
f for some unique function f ∈ S(Hn). And,

( tPf)∧(πµ) = t̂P (πµ)f̂(πµ) = 0,

since f̂(πµ) is represented by the kernel Kµ. Thus, by Fourier inversion, tPf = 0.
Q.E.D.

Example 3.2. By (3.9), for the Lewy operator Z = X + iY on H1, one has

t̂Z(πµ0) = −
(
d

dx
+ x

)
, if µ0 = −1/2π.

Thus, the Gaussian e−x2/2 lies in the kernel of t̂Z(πµ0).

Remark 3.3. For a representation theoretic pendant to Theorem 2.6, see [14].

4 Second order PDO’s on Hn with real coefficients and the

metaplectic group

In the remaining part of these lectures, we shall discuss the following (still largely open)

PROBLEM. Classify all second order left-invariant PDO’s on Hn which are locally solvable.

Let me remark that local solvability has also been studied for operators of higher order, and
on more general Lie groups, in particular for bi-invariant PDO’s and for “transversally elliptic”
operators. Some reference to the vast literature on the subject can be found in [1] and [22].

We shall concentrate here on the case of homogeneous operators of degree 2, which are of
the form

L =
2n∑

j,k=1

ajkWjWk + iαU, ajk, α ∈ C,(4.1)

where Wj := Xj , Wn+j := Yj, j = 1, . . . , n.
Throughout this section, the ajk will be real; the case of complex coefficients will be discussed

in the last section. For results in the non-homogeneous case, see e.g. [21], [17].
Let us put A := (ajk)j,k=1,...,2n and

S := −AJ.(4.2)

Observe that A is real and symmetric if and only if S ∈ sp(n,R). Since, as it turns out, solvability
of the operator L is very much ruled by the spectral properties of S, we shall put
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∆S :=
2n∑

j,k=1

ajkWjWk, S ∈ sp(n,R),

where A is related to S by (4.2).
The following theorem gives a complete answer for operators of the form (4.1) and A real

(for a generalization to arbitrary 2-step nilpotent groups, see [20]).

Theorem 4.1 [19] The operator Lα := ∆S + iαU is not locally solvable if and only if all of the
following three conditions hold:

(i) α ∈ R;

(ii) S is semisimple and has purely imaginary spectrum σ(S); in this case, there exists some
T ∈ Sp(n,R) such that S′ := TST−1 takes on the normal form

S′ =




λ1

0
. . .

λn

−λ1

. . . 0
−λn




,(4.3)

with ”frequencies” λ1, . . . , λn ∈ R.

(iii) There are no constants C,N > 0, s.t.

∣∣∣∣∣∣

n∑

j=1

(2kj + 1)λj ± α

∣∣∣∣∣∣
≥ C (1 + k1 + . . .+ kn)−N(4.4)

for all k1, . . . , kn ∈ N.

Before we discuss some of the methods employed in its proof, let us consider some examples:

Example 1. Assume S is given by (4.3). Then

∆S = −
n∑

j=1

λj(X
2
j + Y 2

j ).

If all λj are of the same sign, ∆S is a so-called sub-Laplacian. In this case, condition (4.4) is
equivalent to α 6∈ C, where C is the “critical set”

C := {±
n∑

j=1

(2kj + 1)λj : kj ∈ N}.

Observe that local non-solvability for these operators does not only depend on the principal
part of order 2, but in fact in a crucial way on the first order part iαU . This phenomenon,
which is in sharp contrast to the behaviour of so-called “principal type” operators (see e.g.[22]),
had first been observed in the fundamental work [8] on the so-called Kohn-Laplacian ∆K =∑n

j=1(X
2
j + Y 2

j ). For general sub-Laplacians, see also [2].
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It is interesting to remark that the approach by Folland/Stein in [8] avoids representation
theory. It is based on the explicit formula

(∆K + iαU)Φα = γαδ,(4.5)

where

Φα := q
−n−α

2
+ q

−n+α
2

− ,

with q±(z, u) = |z|2 ± 4iu given by (2.6), and

γα :=
cn

Γ
(n+α

2

)
Γ
(n−α

2

) .

Clearly, for α 6∈ C, γα 6= 0, hence 1
γα

Φα is a fundamental solution of ∆K + iαU , which implies
its local solvability.

This approach, however, is restricted to rather particular operators (compare also [6]).

Example 2. X2
1 + Y 2

1 − λ(X2
2 + Y 2

2 ) on H2 is locally solvable if and only if there are constants
C,N > 0 s.t.

|λ− p/q| > Cq−N (compare (4.4)),

for all odd p, q ∈ N, i.e. if and only if λ is neither a rational number p/q with odd p and q, nor
a Liouville number of “odd type”.

Example 3. X2
1 − Y 2

1 + iαU is locally solvable on H1 for every α ∈ C.

In fact, here S =

(
0 −1
−1 0

)
, hence σ(S) = {−1, 1} is real.

Basic tools in the proof of Theorem 4.1

4.1 “Symplectic” changes of coordinates

If T ∈ Sp(n,R) →֒ Aut (Hn), then, since exp = id for Hn, X(f ◦T )(g) = d
dtf(T (g exp tX))|t=0 =

d
dtf(T (g) exp tT (X))|t=0 = (T (X)f)(Tg) for every X ∈ hn. This implies (Exercise)

∆S(f ◦ T ) = (∆TST−1f) ◦ T.(4.6)

Since U(f ◦T ) = (Uf)◦T , this shows that solvability of ∆S +iαU depends only on the conjugacy
class of S ∈ sp(n,R) under the real symplectic group Sp(n,R).

4.2 Application of the group Fourier transform

Whereas Hörmander’s criterion cannot be used here to prove non-solvability, since Lα has a real
principal symbol, Theorem 2.6 does apply in a very similar way as in Example 3.2 .

Let us illustrate this in the case of the operators

Lα = X2 + Y 2 + iαU on H1.(4.7)

By (3.9), we have

L̂α(πµ) =
d2

dx2
− (2πµx)2 − 2παµ.
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But, d2

dx2 − (2πµx)2 is just a re-scaled Hermite operator, with eigenfunctions

hµ
k(x) := (2π|µ|)1/4hk((2π|µ|)1/2x)

and associated eigenvalues
−2π|µ| (2k + 1), k ∈ N.

Here,

hk(x) = ck(−1)kex
2/2 d

k

dxk
e−x2

denotes the L2-normalized Hermite function of order k.
Consequently,

L̂α(πµ)hµ
k = −2π|µ|(2k + 1 + (signµ)α)hµ

k ,(4.8)

i.e. there exist µ and k with L̂α(πµ)hµ
k = 0 iff α ∈ C = {±(2k + 1) : k ∈ N}.

So, by Corollary 3.1, Lα is not l.s., if α ∈ C.
In general, if S satisfies (i), (ii) and (iii) in Theorem 4.1, then, by standard symplectic linear

algebra, one finds T ∈ Sp(n,R), which conjugates S into the form (4.3) (see e.g. [19, Lemma
3.1], and assuming that S = S′, one can argue in a similar way as above, keeping Remark 3.3
in mind.

On the other hand, if conditions (i) and (ii) in Theorem 4.1 do apply, but the diophantine
condition (4.4) fails, one can prove local solvability by means of the Fourier inversion formula
(3.3).

On a formal level, and grossly oversimplifying compared to the general case, the argument,
which we shall again demonstrate in the case of the operator (4.7), is as follows:

Suppose α 6∈ C, i.e. that (4.4) fails. Then, by (4.8), the operator L̂α(πµ) is invertible, with

||(L̂α(πµ))−1|| ≤ C|µ|−1.(4.9)

Now, given f ∈ D(H1), try to define a function w on H1 by putting

w(g) :=

∫

R×

tr(L̂α(πµ)−1f̂(πµ)πµ(g)) |µ| dµ.(4.10)

Since then ŵ(πµ) = L̂α(πµ)−1f̂(πµ), one finds that (Lαw)∧(πµ) = L̂α(πµ)ŵ(πµ) = f̂(πµ), hence
Lαw = f (at least on a formal level).

To make this argument rigorous, the main problem is that (4.10) will in general not converge,
because of the blow-up of estimate (4.9) as µ→ 0. This can be overcome as follows:

Define v as w by (4.10), only with L̂α(πµ)−1 replaced by 2πiµ L̂α(πµ)−1. Then v turns out
to be well-defined, and one finds that

Lαv = Uf.(4.11)

But, since U is locally solvable, given any ϕ ∈ D, there is some f ∈ D s.t. Uf = ϕ on the
support of ϕ. But then

Lαv = ϕ on suppϕ,

hence Lα is locally solvable.
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4.3 Twisted convolution and the metaplectic group

For generic S ∈ Sp(n,R), the operator ∆̂S(πµ) will no longer have a discrete spectrum, and the
approach described above breaks down.

What saves the day is the following

Lemma 4.2 For S1, S2 ∈ sp(n,R), we have

[∆S1 ,∆S2 ] = −2U∆[S1,S2].

Proof. Exercise.

Denote by fµ the partial Fourier transform of f “along the center” of Hn, i.e.

fµ(z) :=

∫

R
f(z, u)e−2πiµudu, µ ∈ R.

Moreover, for suitable functions or distributions ϕ,ψ on R2n, define the µ-twisted convolution
of ϕ and ψ by

ϕ×µ ψ(z) =

∫

R2n
ϕ(z − z′)ψ(z′)eπiµ〈z−z′,z′〉 dz′.

One easily verifies that, for suitable distributions f1, f2 on Hn,

(f1 ⋆ f2)
µ = fµ

1 ×µ f
µ
2 ,

(f∗)µ = (fµ)∗.(4.12)

One also easily sees that L1(R2n,+,×µ, ∗) is a (non-commutative) involutive Banach algebra,
and (4.12) shows that f 7→ fµ is a ∗-homomorphism of L1(Hn,+, ⋆,

∗ ) onto it (another way to
verifying these facts is by passage through the ”reduced” Heisenberg group; compare [7]).

If µ = 1, we just speak of the twisted convolution, and write ϕ× ψ in place of ϕ×1 ψ.

Remark 4.3 Twisted convolution shares many features of ordinary convolution. For example,
one has Young’s inequality

||ϕ× ψ||Lr ≤ ||ϕ||Lp ||ψ||Lq ,

if 1/p + 1/q = 1 + 1/r. More surprising is the following fact (see [7]): If ϕ,ψ ∈ L2(R2n), then
also ϕ× ψ ∈ L2(R2n), and

||ϕ× ψ||L2 ≤ ||ϕ||L2 ||ψ||L2 .

Now, if P ∈ u(hn), then from (4.12) we get

(Pf)µ = (f ⋆ Pδ)µ = fµ ×µ (Pδ)µ,

where clearly (Pδ)µ is a distribution supported at 0 ∈ R2n. This shows that there exists a PDO
Pµ on R2n such that

(Pf)µ = Pµfµ, f ∈ S(R2n).(4.13)

For instance, by (1.5),

Xµ
j =

∂

∂xj
− iπµyj , Y µ

j =
∂

∂yj
+ iπµxj , Uµ = 2πiµ.(4.14)

In particular, from Lemma 4.2, we get

[∆µ
S1
,∆µ

S2
] = −4πiµ∆µ

[S1,S2]
.
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Moreover, ∆µ
S is formally self-adjoint, hence the mapping

S 7→ i

4πµ
∆µ

S(4.15)

is a representation of sp(n,R) by (formally) skew-adjoint operators on L2(R2n).

Let us consider the case µ = 1. In [11], R. Howe has proved for this case that the map (4.15)
can be exponentiated to a unitary representation of the metaplectic group Mp(n,R), a two-fold
covering of the symplectic group. Mp(n,R) can in fact be represented by twisted convolution
operators of the form f 7→ f × γ, where the γ’s are suitable measures which, generically, are
multiples of purely imaginary Gaussians

eA(z) := e−iπ tz·A·z,(4.16)

with real, symmetric 2n × 2n matrices A. In particular, one has

ei
t

4π
∆1

Sf = f × γt,S , t ∈ R.(4.17)

The measures γt,S have been determined explicitly in [18]. To indicate how this can be
accomplished, let us argue on a completely formal basis:

If eA, eB are two Gaussians (4.16) such that det(A+B) 6= 0, one computes that

eA × eB = [det(A+B)]−1/2eA−(A−J/2)(A+B)−1(A+J/2),

where a suitable determination of the root has to be chosen. Choosing A = 1
2JS1, B = 1

2JS2,
with S1, S2 ∈ sp(n,R), and assuming that S1 and S2 commute, one finds that

e 1
2
JS1

× e 1
2
JS2

= 2n(det(S1 + S2))
−1/2 e 1

2
J [S1S2+I)(S1+S2)−1].

This reminds of the addition law for the hyperbolic cotangent, namely

coth(x+ y) =
coth x coth y + 1

coth x+ coth y
.

We are thus led to define, for non-singular S,

A(t) :=
1

2
J coth(tS/2),(4.18)

which is well-defined at least for |t| > 0 small.
Then

eA(t1) × eA(t2) = 2n(det(A(t1) +A(t2)))
−1/2 eA(t1+t2).

And, from

coth x+ coth y =
sinh(x+ y)

sinhx sinh y
,

we obtain (ignoring again the determination of roots)

[det sinh((t1 + t2)S/2)]
1/2 [det(A(t1) +A(t2))]

−1/2

= [det sinh(t1S/2)]
1/2 [det sinh(t2S/2)]

1/2.

Together this shows that

γt,S := 2−n[det sinh(tS/2)]−1/2eA(t)(4.19)
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forms a (local) 1-parameter group under twisted convolution, and it is not hard to check that
its infinitesimal generator is i

4π∆1
S.

Warning: Formula (4.18) only holds true for “generic” S ∈ sp(n,R) and t ∈ R.

If one defines the symplectic Fourier transform of f on R2n by

△

f (ζ) :=

∫

R2n
f(z)e−iπ〈ζ,z〉dz = f̂(

1

2
Jζ),

one obtains a formula analogous to (4.19) for
△
γ t,S :

△
γ t,S= [det cosh(tS/2)]−1/2eB(t),(4.20)

where

B(t) :=
1

2
J tanh(tS/2).(4.21)

4.4 Solvability of Lα if σ(S) ⊂ C \ (iR) and α ∈ R.

In this case, formulas (4.19), (4.20) do apply in the strict sense. Observing that 〈γt,S , ϕ〉 =

2−2n〈
△
γ t,S ,

△
ϕ〉, they easily imply that there are a Schwartz norm || · ||S and a constant β 6= 0, s.t.

|〈γt,S , ϕ〉| ≤
1

cosh βt
||ϕ||S .(4.22)

For arbitrary µ 6= 0, put

γµ
t,S(z) :=





µnγt,S(µ1/2z), µ > 0,

|µ|nγt,S(|µ|1/2z), µ < 0.

(4.23)

Then one verifies (see [18]) that

ei
t

4πµ
∆µ

Sf = f ×µ γµ
t,S .(4.24)

Now, the idea to solve the equation

LαF = (∆S + iαU)F = f(4.25)

is as follows: By taking a partial Fourier transformation, (4.25) is equivalent to

(
i

4πµ
∆µ

S − iα

2

)
Fµ =

i

4πµ
fµ ∀µ ∈ R×.

Formally, we then obtain Fµ by

Fµ = −
∫ ∞

0
e

it
4πµ

∆µ
S
− iα

2
t
(

i

4πµ
fµ
)
dt,

hence

F (z, u) = −
∫

R×

∫ ∞

0
e−i α

2
tfµ ×µ γ

µ
t,S(z) dt

e2πiµu

4πiµ
dµ = f ⋆ K(z, u),
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where K is the distribution, formally defined by

K(z, u) = −
∫

R×

∫ ∞

0
e−i α

2
tγµ

t,S(z) dt
e2πiµu

4πiµ
dµ.

This suggests to define K by

〈K,ϕ〉 = −
∫ ∞

0

∫

R×

〈
γµ

t,S , ϕ
−µ
〉
e−i α

2
t dµ

4πiµ
dt.(4.26)

Now from (4.22) one derives that there are constants N,M ∈ N s.t.

∣∣∣
〈
γµ

t,S , ϕ
−µ
〉∣∣∣ ≤ C

(1 + |µ|)N
(cosh βt)|µ|M ||ϕ−µ||S .

This estimate implies that the distribution K̃, defined in the same way as K, only with dµ
replaced by (2πiµ)M+1dµ, is in fact well-defined. Moreover, we then have

Lα(f ⋆ K̃) = UM+1f.

From here on, one can argue in a similar way as in §4.2 to show that Lα is locally solvable.

Remark. The discussion of the remaining cases in Theorem 4.1 requires considerably more care
(see [19]).

5 Second order PDO’s on Hn with complex coefficients

The classification of locally solvable PDO’s on Hn of the form

L =
2n∑

j,k=1

ajkWjWk + lower order terms(5.1)

with complex coefficients ajk appears to be a challenging problem, which as of yet has only been
answered for a few classes of operators (see [6], [16], [17] and [12]). Let us briefly survey those
results.

We write the principal part of L again as ∆S , however, now with S ∈ sp(n,C), i.e. S =
S1 + iS2, with S1, S2 ∈ sp(n,R). The operators studied in [6], [16], [17] can be described as
follows:

Assume R2n decomposes into symplectic subspaces

R2n = V1 ⊕ · · · ⊕ Vr,(5.2)

where each (Vj , ωj), with ωj := 〈 , 〉|Vj×Vj
, is a symplectic vector space, and where the Vj ’s are

pairwise orthogonal w.r. to 〈 , 〉.
Moreover, assume that each Vj is S-invariant, i.e. that Si(Vj) ⊂ Vj for i = 1, 2. Recall that a

basis e1, . . . , em, f1, . . . , fm of a symplectic vector space (V, ω) is called canonical or symplectic,
if

ω(ej , ek) = ω(fj, fk) = 0, ω(ej , fk) = δjk.

Then, choosing such a basis for each subspace Vj , we assume that S can be written as a block
diagonal matrix

S =




γ1S(1)

γ2S(2)

. . .

γrS(r)


 ,(5.3)
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with γj ∈ C× and

S2
(j) = −I, j = 1, . . . , r.(5.4)

Observe that (5.3) generalizes the case (ii), formula (4.3), in Theorem 4.1, which appears to be
of particular interest, to the complex setting.

We may and shall assume that each of the symplectic subspaces Vj in (5.2) is minimal in
the sense that it does not contain any proper S-invariant symplectic subspace.

Theorem 5.1 [17] If at least one of the minimal subspace Vj has dimension > 2, then ∆S + P
is not locally solvable for all first order (not necessarily invariant) differential operators P with
smooth coefficients.

This result is proved by means of Hörmander’s criterion Theorem 2.3: If we put again
S = −AJ , then it follows from (1.5) that the principal symbol of ∆S is given by

σS((z, u), (ζ, µ)) := − t(ζ − πµJz) · A · (ζ − πµJz).(5.5)

And, a straight-forward computation yields (compare Lemma 4.2)

{σS , σS′} = 4πµσ[S,S′] ∀S, S′ ∈ sp(n,C).(5.6)

Thus, Hörmander’s criterion, applied to ∆S + P , just reads as follows:

There is some ζ ∈ R2n such that

(H′) tζA1ζ = tζA2ζ = 0 and tζA3ζ 6= 0,

where
A1 := S1J, A2 := S2J and A3 := [S1, S2]J.

Open Problem. Classify all S = S1 + iS2 ∈ sp(n,C) for which (H′) applies.

In general, this seems to be a hard “semi-algebraic” problem. The proof of Theorem 5.1
makes use of a classification of normal forms of matrices S ∈ sp(n,C) satisfying S2 = −I, with
respect to conjugation by real symplectic matrices T ∈ Sp(n,R). Such a classification has been
given in [23]. There remains the

The case where all of the “blocks” γjS(j) are of size 2 × 2

According to the classification of normal forms in [23], the S(j) can then be assumed to be either
of the form

S(j) =

(
iεjλj λ2

j − 1
1 −iεjλj

)
“Type 1”,(5.7)

with λj ∈ {−1} ∪ [0,∞[ and

εj =

{
1, if |λj | ≤ 1,
±1, if λj > 1,

or of the form

S(j) =

(
0 i
i 0

)
“Type 3”.(5.8)
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The corresponding operators ∆S(j)
are given by

Lλj ,εj
:= (1 − λ2

j)X
2
j + Y 2

j − iεjλj(XjYj + YjXj) “Type 1”(5.9)

and

−i(X2
j − Y 2

j ) “Type 3”.(5.10)

The case n = 1

Let us briefly discuss operators

Lλ := (1 − λ2)X2 + Y 2 + iλ(XY + Y X)(5.11)

on H1. We call Lλ a generalized sub-Laplacian, if 0 ≤ λ < 1, i.e. if ℜeLλ is a sub-Laplacian. In
the case λ = 1, i.e.

L1 = Y 2 + i(XY + Y X),(5.12)

we speak of a degenerate generalized sub-Laplacian. If λ > 1, then ℜeLλ is more of “hyperbolic
type”.

For H1, local solvability of left-invariant operators (5.1) can be discussed in a complete way
([17]). To indicate the flavour of these results, let me highlight a few examples:

Example 1. If Lλ is a generalized sub-Laplacian, then Lα + iαU is l.s. if and only if

α 6∈ C := {±(2k + 1) : k ∈ N}.

This extends the result for sub-Laplacians.

Example 2. If L1 = Y 2+i(XY +Y X) is a degenerate generalized sub-Laplacian, then L1+iαU
is locally solvable if and only if

α 6∈ C+ := {(2k + 1) : k ∈ N}.

For instance, for α = −1 and α = 1, respectively, putting Z̃ := Y + 2iX, one has

L1 − iU = Y Z̃,

L1 + iU = Z̃Y.

Since Z̃ is of “Lewy-type”, hence non-solvable, clearly L1 + iU cannot be solvable. The fact that
Y Z̃ is locally solvable is more of a surprise (see[16]).

Example 3. If λ > 1, then Lλ + P is not locally solvable for every P ∈ u(h1) of order 1.
This result cannot be obtained from Hörmander’s criterion, since this fails to apply for arbitrary
operators ∆S on H1 (Exercise). It is proved in [17] by means of a variant of Corollary 3.1, which
applies even to non-homogeneous operators.

The case n ≥ 2

In this case, “most” of the operators ∆S + P are locally non-solvable, as can be shown, with
some effort, by means of Hörmander’s criterion. The “exceptional” operators ∆S , to which (H′)
does not apply, are listed in [17, §6.1]. There are five such exceptional classes, of which I want
to mention two here:
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(i) On Hn, n ≥ 2, “positive combinations of generalized sub-Laplacians and of degenerate
generalized sub-Laplacians”, more precisely

∆S =
m∑

j=1

γj[(1 − λ2
j)X

2
j + Y 2

j + iλj(XjYj + YjXj)] + i
n∑

j=m+1

βj(X
2
j − Y 2

j ),

where |λj | ≤ 1, γj ∈ C×, βj > 0, and where all of the quadratic forms

ℜe(γj [(1 − λ2
j)ξ

2
j + η2

j + 2iλjξiηj ])

are positive-semidefinite.

(ii) On H2, for λ > 1,

∆S = (1 − λ2)X2
1 + Y 2

1 + iλ(X1Y1 + Y1X1)

+(1 − λ2)X2
1 + Y 2

1 − iλ(X2Y2 + Y2X2)

ad (i). Observe that here the matrix A = SJ satisfies ℜeA ≥ 0. Defining B(t) as in (4.21), one

then finds that ℜe(iB(−it)) is positive semidefinite for every t ≥ 0, so that
△
γ−it,S , defined by

(4.20), still remains a “good” Gaussian. As has been shown in [17], this can be used to treat these
operators by means of suitable modifications of the approach outlined in §4.4. In particular, one
finds that ∆SS + iαU is locally solvable for every α not contained in the exceptional set

E := {±
n∑

j=1

γj(2kj + 1) : k1, . . . , kn ∈ N},

provided m = n.
If ℜeA is positive definite, this result follows also from the general theory of ”transversally

elliptic” partial differential operators; see e.g. [10], [3].

Open Problem. Will ∆S + iαU be locally solvable for generic α ∈ C, if S ∈ sp(n,C) and
ℜe(SJ) is positive semidefinite, but not definite?

One can show that Hörmander’s criterion fails in this case (Exercise).

ad(ii). As has been proved recently in [12], the operator ∆S +P is locally solvable for arbitrary
left-invariant lower order terms P .

In fact, the symplectic change of basis

X̃1 := Y1 −
√
λ2 − 1X2, Ỹ1 := Y2 +

√
λ2 − 1X1,

X̃2 := Y2 −
√
λ2 − 1X1, Ỹ2 := Y1 +

√
λ2 − 1X2,

transforms ∆S into the operator

Qλ :=

(
1 +

λ

2
√
λ2 − 1

)
DE − λ

2
√
λ2 − 1

D E,

where
D := X̃1 − iX̃2, E := Ỹ2 + iỸ1.

We may thus reduce ourselves to the study of operators in u(hn), whose leading terms are of the
form

LA :=
∑

j,k

αjkXjYk,
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where A = (αjk)jk is a complex 2 × 2-matrix. Now,

L̂A(πµ) = 2πiµ
2∑

j,k=1

αjk
∂

∂xj
◦ xk

is homogeneous of degree 0. The second important property of Qλ is that Q̂λ(πµ) is elliptic
away from the origin, since its principal symbol is given by

−4πµ

[
(1 +

λ

2
√
λ2 − 1

)(x2 + ix1)(ξ1 − iξ2) −
λ

2
√
λ2 − 1

(x2 + ix2)(ξ1 − iξ2)

]
.

It has been proved in [12] that a left-invariant operator on H2 with leading term LA is locally
solvable, whenever L̂A(πµ) is elliptic away from 0 and detA 6= 0.

In higher dimensions, such an ellipticity property of the operators LA can never hold, which
seems to explain why the exceptional operators of type (ii) only arize on H2.
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