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Model problem

Poisson’s equation with discontinuous and anisotropic coefficients:

−divσ(x) grad u(x) = f (x) for all x ∈ Ω,

u(x) = 0 for all x ∈ ∂Ω.

Discretization by finite element or finite difference scheme leads to
linear system

Ax = b with A ∈ RI×I , b ∈ RI .

Problem: Differential operator is unbounded.
→ Condition number of A grows too quickly.

Possible solution: Find preconditioner C ∈ RI×I to reduce the
condition number, solve

CAx = Cb.
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Ideal preconditioner

Inverse matrix C := A−1 would reduce the condition number to one.

Problem: Computing A−1 directly
takes too long and
requires too much storage.

Approach: Find an approximation of A−1.

Even better: Find an approximation of an LR or Cholesky factorization,
evaluate preconditioner by forward and backward substitution.
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Properties of the inverse

Positivity: Even for simple examples, we have (A−1)ij > 0 for all i , j ∈ I.
→ Cannot use sparse representation. Not even as an approximation.

Diffusion: For infinite time, the solution y of the vector-valued ODE

y ′(t) = b − Ay(t) for all t ∈ R

converges to x , i.e., limt→∞ y(t) = x = A−1b.
In the continuous setting: limit of a diffusion process.

Smoothness: Diffusion processes tend to smoothe the solution,
at least in the absence of driving forces.
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Example: Locally smooth solution

Model problem: σ = 1, b locally supported.
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Observation: Solution increasingly smooth outside of the support of b.
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Generalized regularity result

Observation: Let t , s ⊆ I be subsets of indices that are “geometrically
far away” from each other. Then we have

supp(b) ⊆ s ⇒ x |t = (A−1b)|t smooth

Idea: Smooth functions can be approximated by polynomials, i.e., in a
low-dimensional space V .

supp(b) ⊆ s ⇒ x |t ≈ x̃ ∈ V .

Surprising fact: The latter property also holds for non-smooth and
non-isotropic coefficient functions σ.

Result: A−1|t×s can be approximated by a low-rank matrix as long as
the “target cluster” t is far away from the “source cluster” s.
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Factorization

Farfield of a set t ⊆ I given by

far(t) := {j ∈ I : dist(j , t) ≥ diam(t)},

where diameter and distance are suitable geometric quantities.

Generalized regularity results yield that X |t×far(t) and X |far(s)×s can be
approximated by low rank k .

Thin basis matrices Vt ∈ Rt×k and Ws ∈ Rs×k can be found such that

X |t×far(t) ≈ VtB∗t , X |far(s)×s ≈ AsW ∗
s

for suitable matrices Bt , As.

Factorization: If s ⊆ far(t) and t ⊆ far(s), we have

X |t×s ≈ VtStsW ∗
s , Sts ∈ Rk×k .
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Block structure

Start with entire matrix.

Split into submatrices,
keeping admissible submatrices,
until remaining matrices small enough.

Result:
Hierarchy of clusters t ⊆ I.
Hierarchy of blocks t × s ⊆ I × I.

Matrix representation:
Farfield blocks in factorized form X |t×s ≈ VtStsW ∗

s .
Nearfield blocks are small, stored in standard form.
Cluster bases Vt and Ws in nested form.

→ H2-matrix representation, O(kn) units of storage instead of n2.
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S. Börm (CAU Kiel) H2-matrix preconditioners March 28th, 2014 11 / 21



Block structure

Start with entire matrix.
Split into submatrices,

keeping admissible submatrices,
until remaining matrices small enough.

Result:
Hierarchy of clusters t ⊆ I.
Hierarchy of blocks t × s ⊆ I × I.

Matrix representation:
Farfield blocks in factorized form X |t×s ≈ VtStsW ∗

s .
Nearfield blocks are small, stored in standard form.
Cluster bases Vt and Ws in nested form.

→ H2-matrix representation, O(kn) units of storage instead of n2.
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Goal

We know that A−1 can be approximated by an H2-matrix.

We want to compute this approximation efficiently.

Approach:
Express A−1 in terms of submatrices.
Take advantage of low-rank factorizations to reduce work.

S. Börm (CAU Kiel) H2-matrix preconditioners March 28th, 2014 13 / 21



Block inverse

Block LR factorization yields

A =

(
A11 A12
A21 A22

)
=

(
I

A21A−1
11 I

)(
A11 A12

A22 − A21A−1
11 A12

)
.

Denoting the Schur complement by S := A22 − A21A−1
11 A12, we find

A−1 =

(
A−1

11 −A−1
11 A12S−1

S−1

)(
I

−A21A−1
11 I

)
.

Result: Inverse can be represented by products and inverses of
submatrices. The latter can be handled simply by recursion.
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Matrix multiplication

Goal: Update A← A + BC with A ∈ Rt×r , B ∈ Rt×s and C ∈ Rs×r .

Recursion applied if B and C are not admissible and subdivided.

A←
(

A11 A12
A21 A22

)
+

(
B11 B12
B21 B22

)(
C11 C12
C21 C22

)
.

Low-rank case: B or C is admissible, therefore given in factorized form.

A + BC = A + Vt

(

StsW ∗
s C

) = A + VtZ ∗.

Compute Z = C∗WsS∗ts and perform low-rank update.
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S. Börm (CAU Kiel) H2-matrix preconditioners March 28th, 2014 15 / 21



Matrix multiplication

Goal: Update A← A + BC with A ∈ Rt×r , B ∈ Rt×s and C ∈ Rs×r .

Recursion applied if B and C are not admissible and subdivided.

A←
(

A11 A12
A21 A22

)
+

(
B11 B12
B21 B22

)(
C11 C12
C21 C22

)
.

Low-rank case: B or C is admissible, therefore given in factorized form.

A + BC = A + Vt

(

StsW ∗
s C

) = A + VtZ ∗.

Compute Z = C∗WsS∗ts and perform low-rank update.
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Low-rank update

Goal: Update A← A + XY ∗ with A ∈ H2(V ,W ) and X ,Y ∈ RI×k .

Observation: A + XY ∗ is already an H2-matrix,
for admissible blocks t × s we have

(A + XY ∗)|t×s = VtStsW ∗
s + X |t×kY |∗s×k

=
(
Vt X |t×k

)︸ ︷︷ ︸
=:Ṽt

(
Sts

I

)
︸ ︷︷ ︸

=:S̃ts

(
Ws Y |s×k

)∗︸ ︷︷ ︸
=:W̃∗s

.

Problem: The rank of A + XY ∗ increases.
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Recompression

Goal: Reduce the rank of Ṽt while keeping the resulting error within
acceptable bounds.

Tool: Singular value decomposition

Ṽt

Z ∗t

= Q


σ1

. . .
σk

. . .

P∗

with singular values σ1 ≥ σ2 ≥ . . . and orthogonal Q and P.

Dropping small singular values yields best approximation.

Weight matrices can be used to take the “relative importance” of
different columns of Ṽt into account.
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Ṽt

Z ∗t

≈ Q


σ1

. . .
σk

0

P∗

with singular values σ1 ≥ σ2 ≥ . . . and orthogonal Q and P.
Dropping small singular values yields best approximation.

Weight matrices can be used to take the “relative importance” of
different columns of Ṽt into account.
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Experiment: FEM Cholesky decomposition

Goal: Approximate Cholesky decomposition of a FEM stiffness matrix.
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Results:
Accuracy ‖I − L̃−∗L̃−1A‖2 ≈ 0.1.
Factorization in ∼ n log n operations.
Storage requirements ∼ n.
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Conclusion

Low-rank structure can be used to approximate inverses and
factorizations in O(n).

Efficient algorithms can compute these matrices in O(n log n)
operations.

H2Lib software package available for scientific research.
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