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Model problem

Poisson’s equation with discontinuous and anisotropic coefficients:

—divo(x)grad u(x) = f(x) for all x € €,
u(x)=0 for all x € 9.

Discretization by finite element or finite difference scheme leads to
linear system

Ax=b with A € R®*% b € RE.
Problem: Differential operator is unbounded.
— Condition number of A grows too quickly.

Possible solution: Find preconditioner C € RZ*Z to reduce the

condition number, solve
CAx = Cb.
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Ideal preconditioner

Inverse matrix C := A~! would reduce the condition number to one.

Problem: Computing A~ directly
@ takes too long and
@ requires too much storage.

Approach: Find an approximation of A=".

Even better: Find an approximation of an LR or Cholesky factorization,
evaluate preconditioner by forward and backward substitution.
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Properties of the inverse

Positivity: Even for simple examples, we have (A~ )j >0foralli,jeZ.
— Cannot use sparse representation. Not even as an approximation.

Diffusion: For infinite time, the solution y of the vector-valued ODE
y'(t) = b—Ay(t) forall t € R

converges to x, i.e., lim; . y(t) = x = A~ 'h.
In the continuous setting: limit of a diffusion process.

Smoothness: Diffusion processes tend to smoothe the solution,
at least in the absence of driving forces.
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Example: Locally smooth solution

Model problem: o = 1, b locally supported.
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Observation: Solution increasingly smooth outside of the support of b.
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Generalized regularity result

Observation: Let t, s C 7 be subsets of indices that are “geometrically
far away” from each other. Then we have

supp(b) Cs = x| = (A"'b)|; smooth

Idea: Smooth functions can be approximated by polynomials, i.e., in a
low-dimensional space V.

supp(b)Cs = x|i=xeV.

Surprising fact: The latter property also holds for non-smooth and
non-isotropic coefficient functions o.

Result: A~"|;xs can be approximated by a low-rank matrix as long as
the “target cluster” t is far away from the “source cluster” s.
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Farfield of a set t C 7 given by
far(t) .= {j € Z . dist(j, t) > diam(t)},

where diameter and distance are suitable geometric quantities.

Generalized regularity results yield that X/, far(r) and X|ar(s)xs can be
approximated by low rank k.

Thin basis matrices V; € R™*% and Ws € RSk can be found such that
Xltxtar(ty = ViBf, Xltar(s)xs = AsW;

for suitable matrices B;, As.

Factorization: If s C far(t) and ¢t C far(s), we have

Xltxs = ViSis W, Sis € RF<K,
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Block structure

Start with entire matrix.
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Block structure
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Block structure

Start with entire matrix.

Split into submatrices,
keeping admissible submatrices,
until remaining matrices small enough.

Result:
@ Hierarchy of clusters t C 7.
@ Hierarchy of blocks t x s C 7 x 7.

Matrix representation:
@ Farfield blocks in factorized form X|ixs ~ V;SisWj.
@ Nearfield blocks are small, stored in standard form.
@ Cluster bases V; and W;s in nested form.
— H2-matrix representation, O(kn) units of storage instead of n°.
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We know that A~' can be approximated by an H2-matrix.

We want to compute this approximation efficiently.

Approach:
@ Express A~ in terms of submatrices.
@ Take advantage of low-rank factorizations to reduce work.
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Block inverse

Block LR factorization yields
A <A11 A12> _ < / ) <A11 Aq2 )
Axy A A A Ay — At A A
Denoting the Schur complement by S := A — A1 A7, A2, we find

At — (A A ApST I
S —An AL 1)

Result: Inverse can be represented by products and inverses of
submatrices. The latter can be handled simply by recursion.
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Matrix multiplication

Goal: Update A < A+ BC with A € R, B € R™*S and C € RS>/,

Recursion applied if B and C are not admissible and subdivided.

Aq A12> <B11 B12> <C11 C12>
A+ .
<A21 Ao + Boy Bos) \Co1 Coo
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Matrix multiplication

Goal: Update A < A + BC with A ¢ R™*", B € R™™$ and C € RS*".

Recursion applied if B and C are not admissible and subdivided.
Aq A12> <B11 B12> <C11 C12>
A« + .
<A21 Ao Boy Bos) \Co1 Coo
Low-rank case: B or C is admissible, therefore given in factorized form.

A+ BC=A+ Vi(SsW:C) = A+ V,Z".

Compute Z = C*W;S;; and perform low-rank update.
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Low-rank update

Goal: Update A < A+ XY* with A € H?(V, W) and X, Y € RTxk,

Observation: A+ XY* is already an H2-matrix,
for admissible blocks t x s we have

(A+ XY )|txs = ViStsWg + Xlesck Ysxk

S «
= e Xl (5)) (W Vias)"
—_— —_—

=V ~ =:Wg

Problem: The rank of A+ XY* increases.
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Recompression

Goal: Reduce the rank of V; while keeping the resulting error within
acceptable bounds.

Tool: Singular value decomposition

o

Ok

with singular values o1 > 0o > ... and orthogonal Q and P.
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0
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Recompression

Goal: Reduce the rank of V; while keeping the resulting error within
acceptable bounds.

Tool: Singular value decomposition
o1

VZ ~Q o p*
Ok

0
with singular values o1 > 0o > ... and orthogonal Q and P.
Dropping small singular values yields best approximation.

Weight matrices can be used to take the “relative importance” of
different columns of V; into account.
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Experiment: FEM Cholesky decomposition

Goal: Approximate Cholesky decomposition of a FEM stiffness matrix.
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@ Accuracy ||/ — L*L~"Allz ~ 0.1.
@ Factorization in ~ nlog n operations.
@ Storage requirements ~ n.
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Experiment: BEM Cholesky decomposition

Goal: Approximate Cholesky decomposition of a BEM stiffness matrix.
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@ Accuracy ||/ — L*L~"Alz ~ 0.2.
@ Factorization in ~ nlog n operations.
@ Storage requirements ~ n.
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Conclusion

Low-rank structure can be used to approximate inverses and
factorizations in O(n).

Efficient algorithms can compute these matrices in O(nlog n)
operations.

H2Lib software package available for scientific research.
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