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Model problem

Goal: Given an asymptotically smooth kernel function, solve∫
Ω

g(x , y)u(y) dy = f (x) for all x ∈ Ω.

Discretization leads to system Gu = b with a matrix G ∈ RI×I .

gij =

∫
Ω
ϕi(x)

∫
ω

g(x , y)ϕj(y) dy dx or

gij = g(xi , yj) for i , j ∈ I.

Problem: High accuracy requires large number of basis functions.

Idea: Approximate G by a matrix that can be represented efficiently.
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Uniform H-matrix

Idea: Locally approximate kernel function, e.g., by interpolation

gij = g(xi , yj) ≈
k∑
ν=1

k∑
µ=1

Lτ,ν(xi)g(ξτ,ν , ξσ,µ)Lσ,µ(yj).

for clusters τ, σ ⊆ Ω, xi ∈ τ and yj ∈ σ.

Block approximation by three-term factorization

G|τ̂×σ̂ ≈ VτSτσW ∗
σ .

with τ̂ := {i ∈ I : xi ∈ τ} and σ̂ := {j ∈ I : yj ∈ σ}.

Cluster bases: Vτ depends only on τ , Wσ only on σ.

Coupling matrices Sτσ are k × k -matrices.
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Block tree

Problem: Since the kernel function is only locally smooth, split Ω× Ω
into subdomains τ × σ admitting an approximation.

1D case: τ × σ admissible
if diam(τ) ≤ dist(τ, σ).

General case: Block structure can
be significantly more involved.

Admissible blocks: Factorization

G|τ̂×σ̂ ≈ VτSτσW ∗
σ .

Result: O(nk) storage for coupling matrices (Sτσ),
but O(nk log n) for cluster bases (Vτ ) and (Wσ).
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Cluster basis

Challenge: Cluster basis (Vτ )τ requires storage ∼ nk log n.

Idea: Interpolation in τ ′ ∈ sons(τ) reproduces Lt ,ν .

vτ,iν = Lτ,ν(xi) =
k∑

µ=1

Lτ ′,µ(xi)Lτ,ν(ξτ ′,µ)

Transfer matrices can be stored instead of Vτ :

Vτ =

(
Vτ1Eτ1

Vτ2Eτ2

)
, sons(τ) = {τ1, τ2}.

Store Vτ only for leaves.
Result: Storage ∼ nk .
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H2-matrix

Admissible blocks represented
by coupling matrices

G|τ̂×σ̂ ≈ VτSτσW ∗
σ .

Cluster bases represented
by transfer matrices

Vτ |τ̂ ′×k = Vτ ′Eτ ′ .

Result: H2-matrix, storage O(nk).

H2-matrices are the algebraic counterparts of fast multipole
representations.
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Experiment: Unit sphere

Example: Dirichlet problem on the unit sphere, direct formulation.
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LR factorization

Goal: Given an H2-matrix G, compute its LR factorization G = LR.

Approach: If G is inadmissible, compute G = LR directly.
Otherwise, use submatrices(

G11 G12
G21 G22

)
=

(
L11
L21 L22

)(
R11 R12

R22

)

This is equivalent to

G11 = L11R11,

G12 = L11R12, G21 = L21R11,

G22 − L21R12 = L22R22.

If we can compute Z ← Z + αXY , we can find the LR factorization.
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Multiplication

Goal: Perform update Z |τ̂×ρ̂ ← Z |τ̂×ρ̂ + αX |τ̂×σ̂Y |σ̂×ρ̂ efficiently.

+=

Idea: If (τ, σ) and (σ, ρ) are subdivided, treat them by recursion.

Z |τ̂1×ρ̂1 ← Z |τ̂1×ρ̂1 + αX |τ̂1×σ̂1Y |σ̂1×ρ̂1 + αX |τ̂1×σ̂2Y |σ̂2×ρ̂1

Z |τ̂1×ρ̂2 ← Z |τ̂1×ρ̂2 + αX |τ̂1×σ̂1Y |σ̂1×ρ̂2 + αX |τ̂1×σ̂2Y |σ̂2×ρ̂2

Z |τ̂2×ρ̂1 ← Z |τ̂2×ρ̂1 + αX |τ̂2×σ̂1Y |σ̂1×ρ̂1 + αX |τ̂2×σ̂2Y |σ̂2×ρ̂1

Z |τ̂2×ρ̂2 ← Z |τ̂2×ρ̂2 + αX |τ̂2×σ̂1Y |σ̂1×ρ̂2 + αX |τ̂2×σ̂2Y |σ̂2×ρ̂2
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Multiplication with a leaf block

Important case: What happens if one of the factors is not subdivided?

Example: Let (σ, ρ) be an admissible block of Y .

X |τ̂×σ̂Y |σ̂×ρ̂ = X |τ̂×σ̂(VσSσρW ∗
ρ )

= (X |τ̂×σ̂VσSσρ)W ∗
ρ = AτρW ∗

ρ .

Idea: Aτρ can be computed by fast matrix-vector multiplications.
We “only” need an efficient algorithm for low-rank updates

Z |τ̂×ρ̂ ← Z |τ̂×ρ̂ + αAτρW ∗
ρ .

General case: If (τ, σ) or (σ, ρ) are leaves, the product X |τ̂×σ̂Y |σ̂×ρ̂ is
always a low-rank matrix in factorized representation.
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S. Börm (CAU Kiel) Rank-structured preconditioners SIAM CSE 2015, March 17th 13 / 20



Multiplication with a leaf block

Important case: What happens if one of the factors is not subdivided?

Example: Let (σ, ρ) be an admissible block of Y .

X |τ̂×σ̂Y |σ̂×ρ̂ = X |τ̂×σ̂(VσSσρW ∗
ρ ) = (X |τ̂×σ̂VσSσρ)W ∗

ρ = AτρW ∗
ρ .

Idea: Aτρ can be computed by fast matrix-vector multiplications.
We “only” need an efficient algorithm for low-rank updates

Z |τ̂×ρ̂ ← Z |τ̂×ρ̂ + αAτρW ∗
ρ .

General case: If (τ, σ) or (σ, ρ) are leaves, the product X |τ̂×σ̂Y |σ̂×ρ̂ is
always a low-rank matrix in factorized representation.

S. Börm (CAU Kiel) Rank-structured preconditioners SIAM CSE 2015, March 17th 13 / 20



Multiplication with a leaf block

Important case: What happens if one of the factors is not subdivided?

Example: Let (σ, ρ) be an admissible block of Y .

X |τ̂×σ̂Y |σ̂×ρ̂ = X |τ̂×σ̂(VσSσρW ∗
ρ ) = (X |τ̂×σ̂VσSσρ)W ∗

ρ = AτρW ∗
ρ .

Idea: Aτρ can be computed by fast matrix-vector multiplications.
We “only” need an efficient algorithm for low-rank updates

Z |τ̂×ρ̂ ← Z |τ̂×ρ̂ + αAτρW ∗
ρ .

General case: If (τ, σ) or (σ, ρ) are leaves, the product X |τ̂×σ̂Y |σ̂×ρ̂ is
always a low-rank matrix in factorized representation.
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Low-rank update

Goal: Approximate Z + AB∗. +=

Idea: Result Z + AB∗ is an H2-matrix: for admissible (τ, σ) we have

(Z + AB∗)|τ̂×σ̂ = VτSτσW ∗
σ + A|τ̂×kB|∗σ̂×k

=
(
Vτ A|τ̂×k

)︸ ︷︷ ︸
=:Ṽτ

(
Sτσ

I

)
︸ ︷︷ ︸

=:S̃τσ

(
Wσ B|σ̂×k

)∗︸ ︷︷ ︸
=:W̃∗σ

Challenge: Each update increases storage requirements, although
actual numerical rank may be low.→ Recompression required.
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Recompression

Goal: Given an H2-matrix with unnecessarily high rank, construct a
more efficient approximation.

Row basis: Find orthogonal (Qτ )τ such that

QτQ∗τG|τ×σ ≈ G|τ×σ for all admissible (τ, σ).

Idea: Due to G|τ×σ = VτSτσW ∗
σ , it suffices to ensure

QτQ∗τVτZ ∗τ ≈ VτZ ∗τ ,

where Zτ is a small weight matrix.→ Solve by SVD or RRQR.

Result: Cluster bases can be constructed in O(nk2) operations,
using O(nk) units of auxiliary storage, e.g., for (Zτ )τ .
Conversion of H2-matrix to new bases takes O(nk2) operations.
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Local low-rank update

Goal: Approximate local update Z |τ̂×σ̂ + AB∗.

Cluster bases: Changes affect
entire block rows and columns.

Solution: Use transfer matrices to
limit the effect.

Result: Only O(k2(#τ̂ + #σ̂))
operations required.
Multiplication and factorization
in O(nk2 log n) operations.
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Experiment: Unit sphere

Example: Dirichlet problem on the unit sphere, direct formulation.
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Time for setup:
Less than 6+15 hours for
more than 2 million triangles.

H2-Cholesky preconditioner:
Less than 11 hours.
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Experiment: Crank shaft

Example: Dirichlet problem on the NetGen
“crank shaft” geometry, direct formulation.
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Due to very high quadrature orders, the cost of constructing the
H2-Cholesky preconditioner is almost negligible.
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S. Börm (CAU Kiel) Rank-structured preconditioners SIAM CSE 2015, March 17th 18 / 20



Experiment: Crank shaft

Example: Dirichlet problem on the NetGen
“crank shaft” geometry, direct formulation.

 0

 0.5

 1

 1.5

 2

 1000  10000  100000  1e+06

SLP
DLP

Cholesky

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1000  10000  100000  1e+06

SLP
DLP

Cholesky

Due to very high quadrature orders, the cost of constructing the
H2-Cholesky preconditioner is almost negligible.
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Summary

H2-matrices:
Admissible blocks in factorized form G|τ̂×σ̂ = VτSτσW ∗

σ .

Cluster bases in nested form Vτ =

(
Vτ1Eτ1

Vτ2Eτ2

)
.

Storage requirements O(nk).

Arithmetic operations:
Factorization expressed by multiplications

, O(nk2 log n).

Multiplications expressed by low-rank updates

, O(nk2 log n).
Local low-rank update to G|τ̂×σ̂ in O(k2(#τ̂ + #σ̂)).
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Resources

References
W. Hackbusch, B. N. Khoromskij, S. A. Sauter:
On H2-matrices (2000)
S. B., W. Hackbusch:
Data-sparse approximation by adaptive H2-matrices (2002)
S. B.:
Efficient numerical methods for non-local operators (2010)
S. B., K. Reimer:
Efficient arithmetic operations for rank-structured matrices based
on hierarchical low-rank updates (2015)
S. B., S. Christophersen:
Approximation of integral operators by Green quadrature and
nested cross approximation, arXiv preprint (2015)

Software
H2Lib, open source, available at GitHub

S. Börm (CAU Kiel) Rank-structured preconditioners SIAM CSE 2015, March 17th 20 / 20

http://dx.doi.org/10.1007/s00607-002-1450-4
http://dx.doi.org/10.4171/091
http://dx.doi.org/10.1007/s00791-015-0233-3
http://dx.doi.org/10.1007/s00791-015-0233-3
http://arxiv.org/abs/1404.2234
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http://www.h2lib.org
https://github.com/H2Lib/H2Lib
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