1. The space of p-points

Let me begin by fixing the notation that will be in force throughout this talk:

- k is an algebraically closed field, $\text{char}(k) = p > 0$.
- \mathcal{G} denotes a finite group scheme over k, with coordinate ring $k[\mathcal{G}]$ and group algebra $k\mathcal{G} := k[[\mathcal{G}]]$. In other words, $k\mathcal{G}$ is a finite-dimensional cocommutative Hopf algebra. There are two well-known special cases:
 - The group algebra kG of a finite group G, and
 - the restricted enveloping algebra $U_0(\mathfrak{g})$ of a restricted Lie algebra \mathfrak{g}.
- $\text{mod} \mathcal{G}$ denotes the category of finite-dimensional $k\mathcal{G}$-modules.
- $H^{\bullet}(\mathcal{G}, k) := \bigoplus_{n \geq 0} H^{2n}(\mathcal{G}, k)$ is the even cohomology ring; this is a commutative k-algebra. By the Friedlander-Suslin Theorem, $H^{\bullet}(\mathcal{G}, k)$ is finitely generated.
- $\text{mod} \mathcal{G}$ denotes the category of finite-dimensional $k\mathcal{G}$-modules.
- $V_G(M) := \{ \alpha \in P_G \mid \alpha^*(M) \text{ is not projective} \}$ is called the p-support of M.

Support varieties are important invariants, which are usually hard to compute. This poses the problem of finding a non-cohomological characterization while retaining the homological features. At this stage, the fact that k is algebraically closed enters.

For notational convenience we put $A_p := k[T]/(T^p)$. Given any homomorphism $\alpha : A_p \rightarrow k\mathcal{G}$ of k-algebras, we denote by $\alpha^* : \text{mod} \mathcal{G} \rightarrow \text{mod} A_p$ the functor given by pull-back along α.

Definition. An algebra homomorphism $\alpha : A_p \rightarrow k\mathcal{G}$ is called a p-point if

- (P1) α is left flat, and
- (P2) there exists an abelian unipotent subgroup $U \subseteq \mathcal{G}$ with $\text{im} \alpha \subseteq kU$.

Two p-points α, β are equivalent ($\alpha \sim \beta$) if for every $M \in \text{mod} \mathcal{G}$ we have $\alpha^*(M)$ is projective $\iff \beta^*(M)$ is projective.

The set of p-points will be denoted P_G, and we write $P(\mathcal{G}) := P_G/\sim$.

Since this definition looks somewhat contrived, let us spend a few moments on the defining conditions. Property (P1) means that the pull-back functor $\alpha^* : \text{mod} k\mathcal{G} \rightarrow \text{mod} A_p$ sends projectives to projectives. This is motivated by the fact that projective modules have trivial support varieties.

Condition (P2) allows us to reduce many questions to the consideration of p-points of abelian unipotent group schemes. Such a group scheme U is the Cartier dual of an infinitesimal group. Consequently, we have

$$kU \cong k[X_1, \ldots, X_n]/(X_1^{p^r_1}, \ldots, X_n^{p^r_n}).$$

Accordingly, U is the analogue of an abelian p-subgroup of a finite group G.

Let $M \in \text{mod} \mathcal{G}$. Then

$$P_G(M) := \{ [\alpha] \in P_G : \alpha^*(M) \text{ is not projective} \}$$

is called the p-support of M.

Theorem 2.1. Suppose that unipotent subgroups of complexity 1.

Example. Carlson module associated to ζ is the G-module $\Omega^0_G(k)$ such that

$$\text{dim } \Omega^0_G(k) = \text{proj}(\mathcal{V}_G(k)) \quad \forall M \in \text{mod } G.$$

In particular, we have $\dim P(G)_M = \text{cx}_G(M) - 1$, where $\text{cx}_G(M)$ denotes the complexity of the G-module M, that is, the polynomial rate of growth of a minimal projective resolution of M.

2. The set of Jordan Types

New features arise when one considers the isomorphism type of $\alpha^*(M)$, rather than just asking whether this module is projective. If $M \in \text{mod } G$ and $\alpha \in \text{Pt}(G)$, then

$$\alpha^*(M) \cong \bigoplus_{i=1}^{\text{dim } P(G)_M} \alpha_i(M)[i],$$

where $[i]$ denotes the i-dimensional indecomposable A_p-module. We call the isoclass of $\alpha^*(M)$ the Jordan type $\text{Jt}(M, \alpha)$ of M relative to α. Then

$$\text{Jt}(M) := \{\text{Jt}(M, \alpha) ; \alpha \in \text{Pt}(G)\}$$

is the finite set of Jordan types of M.

The theory of Jordan types was initiated by Friedlander-Pevtsova-Suslin and its ramifications are only emerging. At this juncture, the following three aspects are being investigated:

- Jordan types give rise to finer invariants than support varieties do,
- they have led to the introduction of new classes of modules,
- they may be used to show that certain modules are indecomposable.

In the geometric approach via support varieties, the following modules play a prominent rôle. Let $\zeta \in H^n(G, k) \setminus \{0\}$ be a non-zero element. By general theory, ζ corresponds to a non-zero homomorphism $\hat{\zeta} : \Omega^0_G(k) \to k$, and

$$L_{\zeta} := \ker \hat{\zeta}$$

is the Carlson module associated to ζ. If n is even, then $\mathcal{V}_G(L_{\zeta}) = Z(\zeta)$.

Example. Suppose that $p \geq 3$, and let $\zeta \in H^n(G, k) \setminus \{0\}$ be such that $L_{\zeta} \neq (0)$.

1. If n is even and ζ is not nilpotent, then $\text{Jt}(L_{\zeta}) = \{m_{\zeta}[p], [1] \oplus [p-1] \oplus n_{\zeta}[p]\}$.
2. If n is even and ζ is nilpotent, then $\text{Jt}(L_{\zeta}) = \{[1] \oplus [p-1] \oplus n_{\zeta}[p]\}$. G-modules M with $|\text{Jt}(M)| = 1$ are said to have constant Jordan type.
3. If n is odd, then $\text{Jt}(L_{\zeta}, \alpha) = \begin{cases} 2[p-1] \oplus m_{\zeta}[p] & \text{if } \alpha^*(\zeta) = 0 \\ [p-2] \oplus n_{\zeta}[p] & \text{if } \alpha^*(\zeta) \neq 0. \end{cases}$

Theorem 2.1. Suppose that $p \geq 3$. Let $\zeta \in H^n(G, k) \setminus \{0\}$ be nilpotent and such that $L_{\zeta} \neq (0)$.

1. If n is even, then L_{ζ} is indecomposable.
2. If n is odd, and $P(G) = \bigcup_{\text{cx}_G(l) \geq 2} P(l)$, then L_{ζ} is indecomposable.

If G is a finite group, then the technical condition given in (2) is superfluous. The example of the restricted Lie algebra $\mathfrak{sl}(2)$ shows that infinitesimal groups of complexity 2 may only have abelian unipotent subgroups of complexity 1.
3. Invariants of Auslander-Reiten Components

We let $\Gamma_s(\mathcal{S})$ be the stable Auslander-Reiten quiver of \mathcal{S}. By definition, $\Gamma_s(\mathcal{S})$ is a directed graph, given by

- **vertices**: the isomorphism classes of non-projective indecomposable modules, and
- **arrows** $M \to N$: the irreducible morphisms $M \to N$, and
- **the Auslander-Reiten translation**: $\tau_\mathcal{S}: \Gamma_s(\mathcal{S}) \to \Gamma_s(\mathcal{S})$; $M \mapsto \nu_\mathcal{S} \circ \Omega^2_\mathcal{S}(M)$. Here $\nu_\mathcal{S}$ is the Nakayama functor of \mathcal{S} (which is the identity for finite groups).

A theorem by Riedtmann concerning stable representation quivers ensures that a connected component $\Theta \subseteq \Gamma_s(\mathcal{S})$ can be described by a directed tree T_Θ, whose underlying graph T_Θ, the so-called **tree class**, is uniquely determined.

Given a component $\Theta \subseteq \Gamma_s(\mathcal{S})$, we have

$$P(\mathcal{S})_M = P(\mathcal{S})_N \quad \forall \, M, N \in \Theta.$$

Hence we can speak of the support space $P(\mathcal{S})_\Theta$ of the component. This invariant tells us more about the tree classes of components:

- T_Θ is either a finite Dynkin diagram, an infinite Dynkin diagram, or a Euclidean diagram.
- If $\dim P(\mathcal{S})_\Theta \geq 2$, then $\Theta \cong \mathbb{Z}[A_\infty]$.

The following example concerns a family of groups that naturally arise in the classification of infinitesimal groups of tame representation type. We consider $\text{SL}(2)$ along with its standard maximal torus $T \subseteq \text{SL}(2)$ of diagonal matrices. Given $r \geq 1$, the group $\text{SL}(2)_1 T_r$ is the product of the first Frobenius kernel of $\text{SL}(2)_1$ with the r-th Frobenius kernel of T. Roughly speaking, one can think of its module category as the category of $\mathbb{Z}/(p^r)$-graded modules of $U_0(\mathfrak{sl}(2))$.

Example. Let $\Theta \subseteq \Gamma_s(\text{SL}(2)_1 T_r)$ be a component. Then the following statements hold:

1. If $\dim P(\text{SL}(2)_1 T_r)_\Theta = 1$, then $T_\Theta \cong A_\infty, \tilde{A}_{1,2}$, and there exists $s_\Theta \in \{1, \ldots, p-1\}$ such that

 $$\text{Jt}(M) = \{[s_\Theta] \oplus n_M[p]\}$$

 for every $M \in \Theta$.

2. If $\dim P(\text{SL}(2)_1 T_r)_\Theta = 0$, then $\Theta \cong \mathbb{Z}[A_\infty]/\langle \tau \rangle, \mathbb{Z}[A_\infty]/\langle \tau^{p-1} \rangle$, and there exists $i_\Theta \in \{1, \ldots, \frac{p-1}{2}\}$ such that

 $$\text{Jt}(M) = \{m_M[p], [i_\Theta] \oplus [p - i_\Theta] \oplus n_M[p]\}$$

 for every $M \in \Theta$.

Throughout the remainder of this talk, I will be concerned with results that explain some of these phenomena.

Let M be a non-projective, indecomposable \mathcal{S}-module. Then

$$\mathcal{E}_M : (0) \longrightarrow \tau_\mathcal{S}(M) \longrightarrow E_M \longrightarrow M \longrightarrow (0)$$

denotes the **almost split sequence** terminating in M. These sequences are closely linked to the structure of the AR-quiver: The non-projective indecomposable summands of E_M are precisely the predecessors of M and the successors of $\tau_\mathcal{S}(M)$ in the stable AR-quiver $\Gamma_s(\mathcal{S})$.

Given $\alpha \in \text{Pt}(\mathcal{S})$, we say that a component $\Theta \subseteq \Gamma_s(\mathcal{S})$ is α-**split** if $\alpha^*(\mathcal{E}_M)$ splits for every $M \in \Theta$. The component Θ is **locally split** if it is α-split for every $\alpha \in \text{Pt}(\mathcal{S})$.

Proposition 3.1. Let \(\Theta \subseteq \Gamma_s(\mathcal{G}) \) be a component, \(\alpha \in \text{Pt}(\mathcal{G}) \).

1. If \(\Theta \) is not \(\alpha \)-split, then \(P(\mathcal{G})_\Theta = \{ [\alpha] \} \), and \(\Theta \) is either finite or isomorphic to \(\mathbb{Z}[A_\infty]/(\tau^n) \) for some \(n \in \mathbb{N} \).
2. If \(\dim P(\mathcal{G})_\Theta \geq 1 \), then \(\Theta \) is locally split.
3. If \(\Theta \) is \(\alpha \)-split, then \(\alpha_1 : \Theta \rightarrow \mathbb{N}_0 \) is a \(\tau_s \)-invariant additive function for \(i \in \{1, \ldots, p - 1\} \).

The additivity property refers to the additivity of \(\alpha_i \) on the almost split sequences of \(\Theta \).

Given a component \(\Theta \subseteq \Gamma_s(\mathcal{G}) \), we put

\[\text{Pt}(\mathcal{G}, \Theta) := \{ \alpha \in \text{Pt}(\mathcal{G}) ; \Theta \text{ is } \alpha \text{-split} \} \]

Theorem 3.2. Let \(\Theta \subseteq \Gamma_s(\mathcal{G}) \) be an infinite component. Then there exist a \(\tau_s \)-invariant additive function \(f_\Theta : \Theta \rightarrow \mathbb{N} \) and a function \(d^\Theta : \text{Pt}(\mathcal{G}, \Theta) \rightarrow \mathbb{N}^{p-1}_0 \) with

\[\alpha_i(M) = d^\Theta(f_\Theta(M)) \quad 1 \leq i \leq p - 1 \]

for every \(M \in \Theta \) and every \(\alpha \in \text{Pt}(\mathcal{G}, \Theta) \).

Examples. (1) If \(T_\Theta = A_\infty \), then \(f_\Theta(M) = q\ell(M) \) for every \(M \in \Theta \).

(2) If \(T_\Theta = A_\infty^{\infty}, A_{1,2} \), then \(f_\Theta \equiv 1 \).

Let us consider a component \(\Theta \subseteq \Gamma_s(\text{SL}(2)_1\Gamma) \) with \(\dim P(\text{SL}(2)_1\Gamma)_\Theta = 1 \). Then \(T_\Theta = A_\infty^{\infty}, A_{1,2} \).

Each of these components contains a simple module \(S \), whose Jordan type is completely determined by its restriction \(S|_{\text{SL}(2)_1} \).

We also obtain the following new invariant of AR-components.

Corollary 3.3. Let \(\Theta \subseteq \Gamma_s(\mathcal{G}) \) be a locally split component. Then

\[|\text{Jt}(M)| = |\text{im}d^\Theta| \]

for every \(M \in \Theta \).

Corollary 3.4 (Carlson-Friedlander-Pevtsova). If a component \(\Theta \subseteq \Gamma_s(\mathcal{G}) \) contains a module of constant Jordan type, then all modules belonging to \(\Theta \) have constant Jordan type.

We finally turn to components \(\Theta \) that are not locally split. If such a \(\Theta \) is infinite, then \(\Theta \cong \mathbb{Z}[A_\infty]/(\tau^n) \), so we can speak of the quasi-length of a module. Let \((a_{ij})_{1 \leq i, j \leq p - 1} \) be the Cartan matrix of the Dynkin diagram \(A_{p-1} \).

Theorem 3.5. Let \(\Theta \subseteq \Gamma_s(\mathcal{G}) \) be an infinite component, \(\alpha \in \text{Pt}(\mathcal{G}) \) be a \(p \)-point such that

(a) \(\Theta \) is not \(\alpha \)-split, and

(b) if \(N \in \Theta \) is such that \(\alpha^*(\mathcal{E}_N) \) does not split, then \(q\ell(N) = 1 \).

Then there exist a vector \((n_1, \ldots, n_{p-1}) \in \mathbb{N}^{p-1}_0 \setminus \{0\} \) and \(M \in \Theta \) with \(q\ell(M) = 1 \) such that

\[\alpha_i(X) = (\alpha_i(M) - \sum_{j=1}^{p-1} a_{ij} n_j) q\ell(X) + \sum_{j=1}^{p-1} a_{ij} n_j \quad 1 \leq i \leq p - 1 \]

for every \(X \in \Theta \).
The technical condition (b) of this result is known to hold in the following settings:

(1) Θ contains a module whose top or socle has a one-dimensional constituent. In this case, we have $n_i \in \{0, 1\}$.

(2) If \mathcal{G} is a Frobenius kernel of a solvable algebraic group; then we have $n_i = \delta_{i,j}$ for some j depending on Θ.

(3) G is a finite group and Θ contains a module with a cyclic vertex.

(4) $\mathcal{G} = \text{SL}(2)_T$ and $\dim P(\mathcal{G})_{\Theta} = 0$. In this case, translation functors may be used in conjunction with (1).