Dynkin Diagrams, Support Spaces and Representation Type

Rolf Farnsteiner

Advances in Group Theory and Applications
Lecce, June 2011
Lecture II: Support Varieties and Rank Varieties of Restricted Lie Algebras
Recollection
Recollection

- \(k \) is an algebraically closed field \(\text{char}(k) = p > 0 \).
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- G is a finite group scheme over k.

$G^0 \triangleleft G$ is a normal infinitesimal subgroup, $G^0(k) = \{1\}$.

mod G is the category of finite-dimensional kG-modules. Its objects are called G-modules.
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- \mathcal{G} is a finite group scheme over k.
- $k\mathcal{G} = k\mathcal{G}^0 \ast G$, the Hopf algebra of \mathcal{G}.
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- \mathcal{G} is a finite group scheme over k.
- $k\mathcal{G} = k\mathcal{G}^0 \ast G$, the Hopf algebra of \mathcal{G}.
- $G := \mathcal{G}(k)$ is the finite group of k-rational points.
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- \mathcal{G} is a finite group scheme over k.
- $k\mathcal{G} = k\mathcal{G}^0 \ast G$, the Hopf algebra of \mathcal{G}.
- $G := \mathcal{G}(k)$ is the finite group of k-rational points. $\mathcal{G}^0 \trianglelefteq \mathcal{G}$ is a normal infinitesimal subgroup,
Recollection

- \(k \) is an algebraically closed field \(\text{char}(k) = p > 0 \).
- \(\mathcal{G} \) is a finite group scheme over \(k \).
- \(k\mathcal{G} = k\mathcal{G}^0 \ast \mathcal{G} \), the Hopf algebra of \(\mathcal{G} \).
- \(G := \mathcal{G}(k) \) is the finite group of \(k \)-rational points. \(\mathcal{G}^0 \triangleleft \mathcal{G} \) is a normal infinitesimal subgroup, \(\mathcal{G}^0(k) = \{1\} \).
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- \mathcal{G} is a finite group scheme over k.
- $k\mathcal{G} = k\mathcal{G}^0 \ast G$, the Hopf algebra of \mathcal{G}.
- $G := \mathcal{G}(k)$ is the finite group of k-rational points. $\mathcal{G}^0 \trianglelefteq \mathcal{G}$ is a normal infinitesimal subgroup, $\mathcal{G}^0(k) = \{1\}$.
- $\text{mod} \mathcal{G}$ is the category of finite-dimensional $k\mathcal{G}$-modules.
Recollection

- k is an algebraically closed field $\text{char}(k) = p > 0$.
- \mathcal{G} is a finite group scheme over k.
- $k\mathcal{G} = k\mathcal{G}^0 \ast G$, the Hopf algebra of \mathcal{G}.
- $G := \mathcal{G}(k)$ is the finite group of k-rational points. $\mathcal{G}^0 \trianglelefteq \mathcal{G}$ is a normal infinitesimal subgroup, $\mathcal{G}^0(k) = \{1\}$.
- mod \mathcal{G} is the category of finite-dimensional $k\mathcal{G}$-modules. Its objects are called \mathcal{G}-modules.
We are interested in the representation type of kG.

First step: Semi-simplicity of kG.

Theorem (Nagata)

Let G be a finite algebraic group. Then kG is semi-simple if and only if

(a) $p \nmid \text{ord}(G(k))$,

(b) $G_0 \sim \prod G_{r_i}(r_i)$.

The latter part is equivalent to saying that G_0 contains no subgroup of type $G_a(1)$.
We are interested in the representation type of kG.

First step:
We are interested in the representation type of kG.

First step: Semi-simplicity of kG
We are interested in the representation type of kG.

First step: Semi-simplicity of kG

Theorem (Nagata)

Let G be a finite algebraic group. Then kG is semi-simple if and only if

(a) $p \nmid \text{ord}(G(k))$

(b) $G_0 \cong \prod_{i=1}^{n} G_{m(r_i)}$

The latter part is equivalent to saying that G_0 contains no subgroup of type G^1.
We are interested in the representation type of \(kG \).

First step: Semi-simplicity of \(kG \)

Theorem (Nagata)

Let \(G \) be a finite algebraic group.

\(\text{\textit{ord}}(G) \) is the order of \(G \) in the group \(G(k) \).
We are interested in the representation type of kG.

First step: Semi-simplicity of kG

Theorem (Nagata)

Let G be a finite algebraic group. Then kG is semi-simple if and only if

1. $p

2. $G_0 \cong \prod_{n_i=1} G_{m(r_i)}$

The latter part is equivalent to saying that G_0 contains no subgroup of type $G_{a(1)}$.
We are interested in the representation type of kG.

First step: Semi-simplicity of kG

Theorem (Nagata)

Let G be a finite algebraic group. Then kG is semi-simple if and only if

(a) $p \nmid \text{ord}(G(k))$, and
We are interested in the representation type of kG.

First step: Semi-simplicity of kG

Theorem (Nagata)

Let G be a finite algebraic group. Then kG is semi-simple if and only if

(a) $p
\n\not| \ord(G(k))$, and

(b) $G^0 \cong \prod_{i=1}^n \mathbb{G}_m(r_i)$.

We are interested in the representation type of \(kG \).

First step: Semi-simplicity of \(kG \)

Theorem (Nagata)

Let \(G \) be a finite algebraic group. Then \(kG \) is semi-simple if and only if

(a) \(p \nmid \text{ord}(G(k)), \) and

(b) \(G^0 \cong \prod_{i=1}^n \mathbb{G}_m(r_i). \)

The latter part is equivalent to saying that \(G^0 \) contains no subgroup of type \(\mathbb{G}_a(1) \).
The Friedlander-Suslin Theorem

Definition

Let M be a G-module. Then $\text{Ext}^*_{\mathbb{Z}}(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_{\mathbb{Z}}(M, M)$ is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_{\mathbb{Z}}(M, M)$:

$$(0) \rightarrow M \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n \rightarrow M \rightarrow (0)$$

Multiplication by splicing.
The Friedlander-Suslin Theorem

Definition

Let M be a G-module. Then $\text{Ext}^*_{G}(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_{G}(M, M)$ is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_{G}(M, M)$:

$(0) \rightarrowtail M \twoheadrightarrow E_1 \twoheadrightarrow E_2 \twoheadrightarrow \cdots \twoheadrightarrow E_n \rightarrowtail M \rightarrowtail (0)$

Multiplication by splicing.
The Friedlander-Suslin Theorem

Definition

Let M be a G-module.

Then $\text{Ext}^*_{G}(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_{G}(M, M)$ is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_{G}(M, M)$:

$\begin{align*}
0 & \rightarrow M \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n \rightarrow M \rightarrow 0 \\
\end{align*}$

Multiplication by splicing.
Definition

Let M be a G-module. Then

$$\text{Ext}^*_G(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_G(M, M)$$

is the Yoneda algebra of self-extensions of M.
The Friedlander-Suslin Theorem

Definition

Let M be a G-module. Then

$$\text{Ext}^*_G(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_G(M, M)$$

is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_G(M, M)$:
The Friedlander-Suslin Theorem

Definition

Let M be a G-module. Then

$$\text{Ext}^*_G(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_G(M, M)$$

is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_G(M, M)$:

$$\begin{align*}
(0) \rightarrow M \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n \rightarrow M \rightarrow (0)
\end{align*}$$
The Friedlander-Suslin Theorem

Definition

Let M be a G-module. Then

$$\text{Ext}^*_G(M, M) := \bigoplus_{n \geq 0} \text{Ext}^n_G(M, M)$$

is the Yoneda algebra of self-extensions of M.

Elements of $\text{Ext}^n_G(M, M)$:

$$(0) \longrightarrow M \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \cdots \longrightarrow E_n \longrightarrow M \longrightarrow (0)$$

Multiplication by splicing.
Yoneda Splice

\[\text{Ext}^m G(M, M) \times \text{Ext}^n G(M, M) \rightarrow \text{Ext}^{m+n} G(M, M) \]
Yoneda Splice

\[\text{Ext}_G^m(M, M) \times \text{Ext}_G^n(M, M) \to \text{Ext}_G^{m+n}(M, M) \]
Yoneda Splice

\[\text{Ext}_G^m(M, M) \times \text{Ext}_G^n(M, M) \rightarrow \text{Ext}_G^{m+n}(M, M) \]
Yoneda Splice

\[\text{Ext}_G^m(M, M) \times \text{Ext}_G^n(M, M) \rightarrow \text{Ext}_G^{m+n}(M, M) \]
Yoneda Splice

\[\operatorname{Ext}_G^m(M, M) \times \operatorname{Ext}_G^n(M, M) \to \operatorname{Ext}_G^{m+n}(M, M) \]

\[(0) \to M \to E_1 \to \cdots \to E_m \to M \to (0), \quad (0) \to M \to E_1' \to \cdots \to E_n' \to M \to (0) \]
$\text{Ext}_G^m(M, M) \times \text{Ext}_G^n(M, M) \to \text{Ext}_G^{m+n}(M, M)$

$\begin{align*}
(0) & \to M \to E_1 \to \cdots \to E_m \\
& \quad \quad M \quad E_1' \to \cdots \to E_n' \to M \to (0)
\end{align*}$
Yoneda Splice

\[\text{Ext}_G^m(M, M) \times \text{Ext}_G^n(M, M) \to \text{Ext}_G^{m+n}(M, M) \]

\[(0) \to M \to E_1 \to \cdots \to E_m \to \cdots \to E'_1 \to \cdots \to E'_n \to M \to (0) \]

\[\begin{array}{c}
\downarrow \quad \downarrow \\
M \\
(0) \quad (0)
\end{array} \]
Yoneda Splice

\[\Ext^m_G(M, M) \times \Ext^n_G(M, M) \rightarrow \Ext^{m+n}_G(M, M) \]

\((0) \rightarrow M \rightarrow E_1 \rightarrow \cdots \rightarrow E_m \rightarrow E'_1 \rightarrow \cdots \rightarrow E'_n \rightarrow M \rightarrow (0) \)
If $M = k$ is the trivial G-module,
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \text{Ext}^2_G(k, k)$$
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \text{Ext}^2_G(k, k)$$

is the even cohomology ring of G.

Theorem (Friedlander-Suslin, 1997)

1. The commutative k-algebra $H^\bullet(G, k)$ is finitely generated.

2. The homomorphism $\Phi_M : H^\bullet(G, k) \to \text{Ext}^\ast_G(M, M)$; $[f] \to [f \otimes \text{id}_M]$ is finite.
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \operatorname{Ext}^2_G(k, k)$$

is the even cohomology ring of G. This is a commutative k-algebra.
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \operatorname{Ext}^2_G(k, k)$$

is the even cohomology ring of G. This is a commutative k-algebra.

Theorem (Friedlander-Suslin, 1997)

1. The commutative k-algebra $H^\bullet(G, k)$ is finitely generated.
2. The homomorphism $\Phi_M : H^\bullet(G, k) \to \operatorname{Ext}^\bullet_G(M, M) ; [f] \mapsto [f \otimes \text{id}_M]$ is finite.
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \text{Ext}^2_G(k, k)$$

is the even cohomology ring of G. This is a commutative k-algebra.

Theorem (Friedlander-Suslin, 1997)

Let M be a G-module.
If $M = k$ is the trivial \mathcal{G}-module, then

$$\text{H}^{\bullet}(\mathcal{G}, k) := \bigoplus_{n \geq 0} \text{Ext}^2_G(k, k)$$

is the even cohomology ring of \mathcal{G}. This is a commutative k-algebra.

Theorem (Friedlander-Suslin, 1997)

Let M be a \mathcal{G}-module.

1. The commutative k-algebra $\text{H}^{\bullet}(\mathcal{G}, k)$ is finitely generated.
If $M = k$ is the trivial G-module, then

$$H^\bullet(G, k) := \bigoplus_{n \geq 0} \text{Ext}^2_G(k, k)$$

is the even cohomology ring of G. This is a commutative k-algebra.

Theorem (Friedlander-Suslin, 1997)

Let M be a G-module.

1. The commutative k-algebra $H^\bullet(G, k)$ is finitely generated.
2. The homomorphism

 $$\Phi_M : H^\bullet(G, k) \longrightarrow \text{Ext}^*_G(M, M) ; \ [f] \mapsto [f \otimes \text{id}_M]$$

 is finite.
Support Varieties

Let R be a commutative k-algebra. Then $\text{Maxspec}(R) := \{ M \subseteq R ; \text{maximal ideal} \}$ is called the maximal spectrum of R. Given $I \subseteq R$, we put $Z(I) := \{ M \in \text{Maxspec}(R) ; I \subseteq M \}$. The $Z(I)$ are the closed subsets of the Zariski topology of $\text{Maxspec}(R)$. If R is a finitely generated k-algebra, then $\text{Maxspec}(R)$ is an affine variety.
Support Varieties

Let R be a commutative k-algebra.
Support Varieties

Let R be a commutative k-algebra. Then

$$\text{Maxspec}(R) := \{ M \trianglelefteq R ; M \text{ maximal ideal} \}$$

is called the maximal spectrum of R.
Let R be a commutative k-algebra. Then

$$\text{Maxspec}(R) := \{ M \trianglelefteq R ; \text{ } M \text{ maximal ideal} \}$$

is called the maximal spectrum of R. Given $I \trianglelefteq R$, we put

$$Z(I) := \{ M \in \text{Maxspec}(R) ; \text{ } I \subseteq M \}.$$
Support Varieties

Let \(R \) be a commutative \(k \)-algebra. Then

\[
\text{Maxspec}(R) := \{ M \trianglelefteq R ; M \text{ maximal ideal} \}
\]

is called the maximal spectrum of \(R \). Given \(I \trianglelefteq R \), we put

\[
Z(I) := \{ M \in \text{Maxspec}(R) ; I \subseteq M \}.
\]

The \(Z(I) \) are the closed subsets of the Zariski topology of \(\text{Maxspec}(R) \).
Let R be a commutative k-algebra. Then

$$\text{Maxspec}(R) := \{ M \trianglelefteq R ; M \text{ maximal ideal} \}$$

is called the maximal spectrum of R. Given $I \trianglelefteq R$, we put

$$Z(I) := \{ M \in \text{Maxspec}(R) ; I \subseteq M \}.$$

- The $Z(I)$ are the closed subsets of the Zariski topology of Maxspec(R).
- If R is a finitely generated k-algebra, then Maxspec(R) is an affine variety.
Let M be a G-module.
Let M be a G-module.

Definition

The affine variety $V(M) := Z(\ker \Phi_M) \subseteq \text{Maxspec}(H^\bullet(G, k))$ is called the cohomological support variety of M.

Is this definition useful? How can support varieties be computed?
Let M be a G-module.

Definition

The affine variety

\[V(G)_M := Z(\ker \Phi_M) \subseteq \operatorname{Maxspec}(H^\bullet(G, k)) \]
Let M be a G-module.

Definition

The affine variety

$$V(G)_M := Z(\ker \Phi_M) \subseteq \text{Maxspec}(H^\bullet(G, k))$$

is called the cohomological support variety of M.
Let M be a G-module.

Definition

The affine variety

$$V(G)_M := Z(\ker \Phi_M) \subseteq \text{Maxspec}(H^\bullet(G, k))$$

is called the **cohomological support variety** of M.

- Is this definition useful?
Let M be a G-module.

Definition

The affine variety

$$V(G)_M := Z(\ker \Phi_M) \subseteq \operatorname{Maxspec}(H^\bullet(G, k))$$

is called the **cohomological support variety** of M.

- Is this definition useful?
- How can support varieties be computed?
Theorem

Let \(B \subseteq kG \) be a block, \(M \in \text{mod} B \).

1. If \(B \) is representation-finite, then \(\dim V(G) M \leq 1 \).
2. If \(B \) is tame, then \(\dim V(G) M \leq 2 \).

Example

Let \(kG = k \left(\mathbb{Z} / (p) \right)^r \).

Then \(H^\ast(G, k) := k\left[X_1, \ldots, X_r \right] \otimes_k \Lambda(\{Y_1, \ldots, Y_r\}) \), with \(\deg(X_i) = 2 \), \(\deg(Y_i) = 1 \).

We thus obtain:

\[V(G) k = \text{Maxspec}(H^\ast(G, k)) \sim A_r. \]

\(kG \) is representation-finite \(\Rightarrow r = 1. \)

\(kG \) is tame \(\Rightarrow r = 2. \)
Theorem

Let $\mathcal{B} \subseteq kG$ be a block, $M \in \text{mod} \, \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim \, V(G) \leq 1$.

2. If \mathcal{B} is tame, then $\dim \, V(G) \leq 2$.

Example

Let $kG = k \left(\mathbb{Z} / (p) \right)^r$.

Then $H^\ast(G, k) := k \left[X_1, \ldots, X_r \right] \otimes k \Lambda(Y_1, \ldots, Y_r)$,

where

$\deg(X_i) = 2$,

$\deg(Y_i) = 1$.

We thus obtain:

$V(G) \sim \text{Maxspec}(H^\ast(G, k)) \sim A_r$.

kG is representation-finite $\Rightarrow r = 1$.

kG is tame $\Rightarrow r = 2$.
Theorem

Let $\mathcal{B} \subseteq kG$ be a block, $M \in \text{mod} \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim V(G)_M \leq 1$.

Example

Let $kG = k \left(\mathbb{Z}/(p) \right)^r$. Then $H^\ast(G, k) := k \left[X_1, \ldots, X_r \right] \otimes k \Lambda(Y_1, \ldots, Y_r)$.

We thus obtain:

$V(G)_k = \text{Maxspec}(H^\ast(G, k)) \cong A_r$.

kG is representation-finite $\Rightarrow r = 1$.

kG is tame $\Rightarrow r = 2$.

Theorem

Let \(\mathcal{B} \subseteq kG \) be a block, \(M \in \text{mod} \mathcal{B} \).

1. If \(\mathcal{B} \) is representation-finite, then \(\dim V(G)_{\mathcal{G}} \leq 1 \).
2. If \(\mathcal{B} \) is tame, then \(\dim V(G)_{\mathcal{G}} \leq 2 \).
Theorem

Let $B \subseteq kG$ be a block, $M \in \text{mod } B$.

1. If B is representation-finite, then $\dim V(G)_M \leq 1$.
2. If B is tame, then $\dim V(G)_M \leq 2$.

Example

Let $kG = k(\mathbb{Z}/(p))^r$.

Then $H^\ast(G, k) := k[X_1, \ldots, X_r] \otimes k(\Lambda(Y_1, \ldots, Y_r))$ with $\deg(X_i) = 2$, $\deg(Y_i) = 1$.

We thus obtain:

$V(G)_k = \text{Maxspec}(H^\ast(G, k)) \sim A_r$.

kG is representation-finite $\Rightarrow r = 1$.

kG is tame $\Rightarrow r = 2$.
Theorem

Let $\mathcal{B} \subseteq kG$ be a block, $M \in \text{mod } \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim V(G)_M \leq 1$.
2. If \mathcal{B} is tame, then $\dim V(G)_M \leq 2$.

Example

Let $kG = k(\mathbb{Z}/(p))^r$.
Theorem

Let $B \subseteq kG$ be a block, $M \in \text{mod } B$.

1. If B is representation-finite, then $\dim V(G)_M \leq 1$.
2. If B is tame, then $\dim V(G)_M \leq 2$.

Example

Let $kG = k(\mathbb{Z}/(p))^r$. Then

$$H^*(G, k) := k[X_1, \ldots, X_r] \otimes_k \Lambda(Y_1, \ldots, Y_r)$$
Theorem

Let $B \subseteq kG$ be a block, $M \in \text{mod } B$.

1. If B is representation-finite, then $\dim V(G)_M \leq 1$.
2. If B is tame, then $\dim V(G)_M \leq 2$.

Example

Let $kG = k(\mathbb{Z}/(p))^r$. Then

$$H^*(G, k) := k[X_1, \ldots, X_r] \otimes_k \Lambda(Y_1, \ldots, Y_r)$$

$\deg(X_i) = 2, \ \deg(Y_i) = 1.$
Theorem

Let $\mathcal{B} \subseteq k\mathcal{G}$ be a block, $M \in \text{mod } \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim V(\mathcal{G})_M \leq 1$.
2. If \mathcal{B} is tame, then $\dim V(\mathcal{G})_M \leq 2$.

Example

Let $k\mathcal{G} = k(\mathbb{Z}/(p))^r$. Then

$$H^*(\mathcal{G}, k) := k[X_1, \ldots, X_r] \otimes_k \Lambda(Y_1, \ldots, Y_r)$$

$\deg(X_i) = 2, \ \deg(Y_i) = 1$.

We thus obtain:

- $V(\mathcal{G})_k = \text{Maxspec}(H^*(\mathcal{G}, k)) \cong \mathbb{A}^r$.
Theorem

Let $\mathcal{B} \subseteq k\mathcal{G}$ be a block, $M \in \text{mod} \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim V(\mathcal{G})_M \leq 1$.
2. If \mathcal{B} is tame, then $\dim V(\mathcal{G})_M \leq 2$.

Example

Let $k\mathcal{G} = k(\mathbb{Z}/(p))^r$. Then

$$H^*(\mathcal{G}, k) := k[X_1, \ldots, X_r] \otimes_k \Lambda(Y_1, \ldots, Y_r)$$

$\deg(X_i) = 2, \ deg(Y_i) = 1$.

We thus obtain:

- $V(\mathcal{G})_k = \text{Maxspec}(H^*(\mathcal{G}, k)) \cong \mathbb{A}^r$.
- $k\mathcal{G}$ is representation-finite $\Rightarrow r = 1$.
Theorem

Let $\mathcal{B} \subseteq k\mathcal{G}$ be a block, $M \in \text{mod} \mathcal{B}$.

1. If \mathcal{B} is representation-finite, then $\dim V(\mathcal{G})_M \leq 1$.
2. If \mathcal{B} is tame, then $\dim V(\mathcal{G})_M \leq 2$.

Example

Let $k\mathcal{G} = k(\mathbb{Z}/(p))^r$. Then

$$H^*(\mathcal{G}, k) := k[X_1, \ldots, X_r] \otimes_k \Lambda(Y_1, \ldots, Y_r)$$

$$\deg(X_i) = 2, \quad \deg(Y_i) = 1.$$

We thus obtain:

- $V(\mathcal{G})_k = \text{Maxspec}(H^*(\mathcal{G}, k)) \cong \mathbb{A}^r$.
- $k\mathcal{G}$ is representation-finite $\Rightarrow r = 1$.
- $k\mathcal{G}$ is tame $\Rightarrow r = 2$.
Lie Algebras

Definition

Let $\Delta : kG \to kG \otimes_k kG$ denote the comultiplication of kG. Then

$$\text{Lie}(G) := \{ x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x \}$$

is called the Lie algebra of G.

Writing $[x, y] = xy - yx$, we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and

(b) $x_p \in \text{Lie}(G)$ for every $x \in \text{Lie}(G)$.

Lie Algebras

Definition

Let $\Delta : kG \to kG \otimes kG$ denote the comultiplication of kG. Then

\[\text{Lie}(G) := \{ x \in kG; \Delta(x) = x \otimes 1 + 1 \otimes x \} \]

is called the Lie algebra of G.

Writing \[[x, y] = xy - yx, \]
we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and

(b) $xp \in \text{Lie}(G)$ for every $x \in \text{Lie}(G)$.
Definition

Let $\Delta : kG \longrightarrow kG \otimes_k kG$ denote the comultiplication of kG. Then $\text{Lie}(G) := \{x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x\}$ is called the Lie algebra of G.

Writing $[x, y] = xy - yx$, we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and

(b) $x \cdot p \in \text{Lie}(G)$ for every $x \in \text{Lie}(G)$.
Definition

Let $\Delta : kG \longrightarrow kG \otimes_k kG$ denote the comultiplication of kG. Then

$$\text{Lie}(G) := \{x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x\}$$

is called the Lie algebra of G.

Writing $[x, y] = xy - yx$, we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and

(b) $xp \in \text{Lie}(G)$ for every $x \in \text{Lie}(G)$.

Lie Algebras

Definition

Let $\Delta : kG \rightarrow kG \otimes_k kG$ denote the comultiplication of kG. Then

$$\text{Lie}(G) := \{ x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x \}$$

is called the Lie algebra of G.

Writing $[x, y] = xy - yx$, we have
Lie Algebras

Definition

Let $\Delta : kG \longrightarrow kG \otimes_k kG$ denote the comultiplication of kG. Then

$$\text{Lie}(G) := \{x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x\}$$

is called the **Lie algebra** of G.

Writing $[x, y] = xy - yx$, we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and...
Lie Algebras

Definition

Let $\Delta : kG \rightarrow kG \otimes_k kG$ denote the comultiplication of kG. Then

$$\text{Lie}(G) := \{x \in kG ; \Delta(x) = x \otimes 1 + 1 \otimes x\}$$

is called the Lie algebra of G.

Writing $[x, y] = xy - yx$, we have

(a) $[x, y] \in \text{Lie}(G)$ for every $x, y \in \text{Lie}(G)$, and
(b) $x^p \in \text{Lie}(G)$ for every $x \in \text{Lie}(G)$.
A subspace $g \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.
A subspace $g \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair $(g, [p])$.
A subspace $g \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair $(g, [p])$ consisting of an abstract Lie algebra g and an operator $g \rightarrow g; x \mapsto x^{[p]}$.
A subspace $g \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair $(g, [p])$ consisting of an abstract Lie algebra g and an operator $g \rightarrow g ; x \mapsto x^{[p]}$ that satisfies the formal properties of an associative p-th power.
• A subspace $\mathfrak{g} \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

• Axiomatically, a restricted Lie algebra is a pair $(\mathfrak{g}, [p])$ consisting of an abstract Lie algebra \mathfrak{g} and an operator $\mathfrak{g} \rightarrow \mathfrak{g}$; $x \mapsto x^{[p]}$ that satisfies the formal properties of an associative p-th power. In particular,
A subspace $\mathfrak{g} \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair $(\mathfrak{g}, [p])$ consisting of an abstract Lie algebra \mathfrak{g} and an operator $\mathfrak{g} \rightarrow \mathfrak{g}; x \mapsto x^{[p]}$ that satisfies the formal properties of an associative p-th power. In particular,

$$(\text{ad } x)^p = \text{ad } x^{[p]} \quad \forall \ x \in \mathfrak{g}.$$
A subspace $\mathfrak{g} \subseteq \Lambda$ of an associative k-algebra Λ satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair $(\mathfrak{g}, [p])$ consisting of an abstract Lie algebra \mathfrak{g} and an operator $\mathfrak{g} \rightarrow \mathfrak{g} ; x \mapsto x^{[p]}$ that satisfies the formal properties of an associative p-th power. In particular,

$$(\text{ad } x)^p = \text{ad } x^{[p]} \quad \forall \ x \in \mathfrak{g}.$$

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}.

A subspace \(g \subseteq \Lambda \) of an associative \(k \)-algebra \(\Lambda \) satisfying (a) and (b) is called a restricted Lie algebra.

Axiomatically, a restricted Lie algebra is a pair \((g, [p])\) consisting of an abstract Lie algebra \(g \) and an operator \(g \to g \); \(x \mapsto x^{[p]} \) that satisfies the formal properties of an associative \(p \)-th power. In particular,

\[
(\text{ad } x)^p = \text{ad } x^{[p]} \quad \forall \ x \in g.
\]

Let \(U(g) \) be the universal enveloping algebra of \(g \). Then

\[
U_0(g) := U(g)/\langle \{ x^p - x^{[p]} \ ; \ x \in g \} \rangle
\]

is called the restricted enveloping algebra of \(g \).
The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$.

Let $k[G_g]$ be the augmentation ideal of $k[G_g]$. Then $x_p = 0$ for all $x \in k[G_g]$. Hence G_g is an infinitesimal group.
• The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$. We have

$$g = \text{Lie}(U_0(g))$$
The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$. We have

$$g = \text{Lie}(U_0(g)) \text{ and } \dim_k U_0(g) = p^\dim_k g.$$
The algebra $U_0(\mathfrak{g})$ inherits the Hopf algebra structure from $U(\mathfrak{g})$. We have

$$\mathfrak{g} = \text{Lie}(U_0(\mathfrak{g})) \quad \text{and} \quad \dim_k U_0(\mathfrak{g}) = p^{\dim_k \mathfrak{g}}.$$
The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$. We have

$$g = \text{Lie}(U_0(g)) \quad \text{and} \quad \dim_k U_0(g) = p^{\dim_k g}.$$

The Hopf algebra $U_0(g)$ is the algebra of measures of a finite group scheme G_g.

We have $k[G_g] = U_0(g)^*$.

The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$. We have

$$g = \text{Lie}(U_0(g)) \quad \text{and} \quad \dim_k U_0(g) = p^{\dim_k g}.$$

The Hopf algebra $U_0(g)$ is the algebra of measures of a finite group scheme G_g.

We have $k[G_g] = U_0(g)^*$. Let $k[G_g]^\dagger$ be the augmentation ideal of $k[G_g]$.

The algebra $U_0(g)$ inherits the Hopf algebra structure from $U(g)$. We have

$$g = \text{Lie}(U_0(g)) \text{ and } \dim_k U_0(g) = p^{\dim_k g}.$$

The Hopf algebra $U_0(g)$ is the algebra of measures of a finite group scheme G_g.

We have $k[G_g] = U_0(g)^*$. Let $k[G_g]^\dagger$ be the augmentation ideal of $k[G_g]$. Then $x^p = 0$ for all $x \in k[G_g]^\dagger$.

Hence G_g is an infinitesimal group.
The algebra $U_0(\mathfrak{g})$ inherits the Hopf algebra structure from $U(\mathfrak{g})$. We have

$$\mathfrak{g} = \text{Lie}(U_0(\mathfrak{g})) \text{ and } \dim_k U_0(\mathfrak{g}) = p^{\dim_k \mathfrak{g}}.$$

The Hopf algebra $U_0(\mathfrak{g})$ is the algebra of measures of a finite group scheme \mathcal{G}_g.

We have $k[\mathcal{G}_g] = U_0(\mathfrak{g})^*$. Let $k[\mathcal{G}_g]^\dagger$ be the augmentation ideal of $k[\mathcal{G}_g]$. Then $x^p = 0$ for all $x \in k[\mathcal{G}_g]^\dagger$.

Hence \mathcal{G}_g is an infinitesimal group.
Definition

Let G be an infinitesimal group. The minimal $r \geq 0$ such that $x^p = 0$ for all $x \in k[G]$ is called the height of G.

Proposition

Let G be an infinitesimal group of height ≤ 1. Then there exists an isomorphism $k[G] \cong U_0(\text{Lie}(G))$ of Hopf algebras.
Definition

Let G be an infinitesimal group.

Proposition

Let G be an infinitesimal group of height ≤ 1. Then there exists an isomorphism $kG \cong U_0(\text{Lie}(G))$ of Hopf algebras.
Definition

Let \mathcal{G} be an infinitesimal group. The minimal $r \geq 0$ such that $x^{p^r} = 0$ for all $x \in k[\mathcal{G}]^\dagger$ is called the height of \mathcal{G}.

Proposition

Let \mathcal{G} be an infinitesimal group of height ≤ 1. Then there exists an isomorphism $k\mathcal{G} \cong U_0(\text{Lie}(\mathcal{G}))$ of Hopf algebras.
Definition
Let \(G \) be an infinitesimal group. The minimal \(r \geq 0 \) such that \(x^{p^r} = 0 \) for all \(x \in k[G]^\dagger \) is called the height of \(G \).

Proposition
Let \(G \) be an infinitesimal group of height \(\leq 1 \). Then there exists an isomorphism \(k[G] \cong U_0(\text{Lie}(G)) \) of Hopf algebras.
Definition
Let \(\mathcal{G} \) be an infinitesimal group. The minimal \(r \geq 0 \) such that \(x^{p^r} = 0 \) for all \(x \in k[\mathcal{G}]^\dagger \) is called the height of \(\mathcal{G} \).

Proposition
Let \(\mathcal{G} \) be an infinitesimal group of height \(\leq 1 \).
Definition

Let G be an infinitesimal group. The minimal $r \geq 0$ such that $x^{p^r} = 0$ for all $x \in k[G]^{\dagger}$ is called the **height** of G.

Proposition

Let G be an infinitesimal group of height ≤ 1. Then there exists an isomorphism

$$kG \cong U_0(\text{Lie}(G))$$

of Hopf algebras.
Examples

Let $g := \text{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices. $U_0(\text{sl}(2))$ has exactly p simple modules L_0, \ldots, L_{p-1} with $\dim kL_i = i + 1$. For $p \geq 3$, the algebra $U_0(\text{sl}(2))$ has blocks B_0, \ldots, B_{p-3}, each B_i possessing two simple modules L_i and L_{p-2-i}.

There is one additional simple block B_{p-1} belonging to the Steinberg module L_{p-1}.

Quiver and relations of $U_0(\text{sl}(2))$: (Drozd, Rudakov, Fischer early 1980's).
Examples

- Let $g := \mathfrak{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices.
Examples

- Let $g := \mathfrak{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices.
- $U_0(\mathfrak{sl}(2))$ has exactly p simple modules $L(0), \ldots, L(p-1)$ with $\dim_k L(i) = i+1$.
- For $p \geq 3$, the algebra $U_0(\mathfrak{sl}(2))$ has blocks B_0, \ldots, B_{p-3}, each B_i possessing two simple modules $L(i)$ and $L(p-2-i)$. There is one additional simple block B_{p-1} belonging to the Steinberg module $L(p-1)$.

Quiver and relations of $U_0(\mathfrak{sl}(2))$ (Drozd, Rudakov, Fischer early 1980's).
Examples

- Let $g := \mathfrak{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices.
- $U_0(\mathfrak{sl}(2))$ has exactly p simple modules $L(0), \ldots, L(p-1)$ with $\dim_k L(i) = i+1$.
- For $p \geq 3$, the algebra $U_0(\mathfrak{sl}(2))$ has blocks $B_0, \ldots, B_{\frac{p-3}{2}}$, each B_i possessing two simple modules $L(i)$ and $L(p-2-i)$.
Examples

- Let $\mathfrak{g} := \mathfrak{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices.

- $U_0(\mathfrak{sl}(2))$ has exactly p simple modules $L(0), \ldots, L(p-1)$ with $\dim_k L(i) = i + 1$.

- For $p \geq 3$, the algebra $U_0(\mathfrak{sl}(2))$ has blocks $B_0, \ldots, B_{\frac{p-3}{2}}$, each B_i possessing two simple modules $L(i)$ and $L(p-2-i)$.

- There is one additional simple block B_{p-1} belonging to the Steinberg module $L(p-1)$.
Examples

- Let $\mathfrak{g} := \mathfrak{sl}(2)$ be the Lie algebra of trace zero (2×2)-matrices.
- $U_0(\mathfrak{sl}(2))$ has exactly p simple modules $L(0), \ldots, L(p-1)$ with $\dim_k L(i) = i+1$.
- For $p \geq 3$, the algebra $U_0(\mathfrak{sl}(2))$ has blocks $\mathcal{B}_0, \ldots, \mathcal{B}_{\frac{p-3}{2}}$, each \mathcal{B}_i possessing two simple modules $L(i)$ and $L(p-2-i)$.
- There is one additional simple block \mathcal{B}_{p-1} belonging to the Steinberg module $L(p-1)$.
- Quiver and relations of $U_0(\mathfrak{sl}(2))$: \[(\text{Drozd, Rudakov, Fischer early 1980's}).\]
Examples

- Let \(g := \mathfrak{sl}(2) \) be the Lie algebra of trace zero \((2 \times 2)\)-matrices.
- \(U_0(\mathfrak{sl}(2)) \) has exactly \(p \) simple modules \(L(0), \ldots, L(p-1) \) with \(\dim_k L(i) = i+1 \).
- For \(p \geq 3 \), the algebra \(U_0(\mathfrak{sl}(2)) \) has blocks \(B_0, \ldots, B_{p-3} \), each \(B_i \) possessing two simple modules \(L(i) \) and \(L(p-2-i) \).
- There is one additional simple block \(B_{p-1} \) belonging to the Steinberg module \(L(p-1) \).
- Quiver and relations of \(U_0(\mathfrak{sl}(2)) \): (Drozd, Rudakov, Fischer early 1980’s).
Examples

The non-simple blocks have a bound quiver presentation given by the quiver Δ_1:
Examples

The non-simple blocks have a bound quiver presentation given by the quiver Δ_1:

\[0 \xrightarrow{\beta_0} 1, \quad 0 \xleftarrow{\alpha_0} 1, \quad 0 \xrightarrow{\beta_1} 1, \quad 0 \xleftarrow{\alpha_1} 1,\]

and relations defining the ideal $J \subseteq k\Delta_1$ generated by
Examples

The non-simple blocks have a bound quiver presentation given by the quiver Δ_1:

$$
\begin{array}{c}
0 \\
\downarrow \beta_0 \\
\downarrow \alpha_1 \\
\uparrow \beta_1 \\
1,
\end{array}
$$

and relations defining the ideal $J \trianglelefteq k\Delta_1$ generated by

$$\{ \beta_{i+1}\alpha_i - \alpha_{i+1}\beta_i, \ \alpha_{i+1}\alpha_i, \ \beta_{i+1}\beta_i \ ; \ i \in \mathbb{Z}/(2) \}.$$
Examples

The non-simple blocks have a bound quiver presentation given by the quiver Δ_1:

$$
\begin{array}{c}
0 \\
\alpha_0 \\
\beta_0 \\
1,
\end{array}
\begin{array}{c}
\alpha_1 \\
\beta_1
\end{array}
$$

and relations defining the ideal $J \trianglelefteq k\Delta_1$ generated by

$$\{ \beta_{i+1}\alpha_i - \alpha_{i+1}\beta_i, \quad \alpha_{i+1}\alpha_i, \quad \beta_{i+1}\beta_i ; \quad i \in \mathbb{Z}/(2) \}.$$

This is a special biserial algebra.
Examples

Let V be a k-vector space, $t: V \rightarrow V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via $[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$ and $(\alpha t, v)[p] := (\alpha p t, \alpha p - 1 t - 1(v))$.

Abstract representation theory shows: $U_0(g(t, V))$ is representation-finite $\iff \dim_k V \leq 1$. $U_0(g(t, V))$ is tame $\iff \dim_k V = 2$ and $p = 2$.
Examples

Let V be a k-vector space, $t : V \rightarrow V$ be a non-zero linear transformation satisfying $t^p = t$.

Examples

Let V be a k-vector space, $t : V \to V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via
Examples

Let V be a k-vector space, $t : V \longrightarrow V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via

$$[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$$
Examples

Let V be a k-vector space, $t : V \to V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via

$$[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$$

and
Examples

Let V be a k-vector space, $t : V \longrightarrow V$ be a non-zero linear
transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a
restricted Lie algebra via

$$[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$$

and

$$(\alpha t, v)^[p] = (\alpha^p t, \alpha^{p-1} t^{p-1}(v)).$$
Let V be a k-vector space, $t : V \rightarrow V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via

$$[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$$

and

$$(\alpha t, v)^[p] = (\alpha^p t, \alpha^{p-1} t^{p-1}(v)).$$

Abstract representation theory shows:
Examples

Let \(V \) be a \(k \)-vector space, \(t : V \rightarrow V \) be a non-zero linear transformation satisfying \(t^p = t \). Then \(g(t, V) := kt \oplus V \) is a restricted Lie algebra via

\[
[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))
\]

and

\[
(\alpha t, v)^[p] = (\alpha^p t, \alpha^{p-1}t^{p-1}(v)).
\]

Abstract representation theory shows:

- \(U_0(g(t, V)) \) is representation-finite \(\iff \dim_k V \leq 1 \).
Examples

Let V be a k-vector space, $t : V \rightarrow V$ be a non-zero linear transformation satisfying $t^p = t$. Then $g(t, V) := kt \oplus V$ is a restricted Lie algebra via

$$[(\alpha t, v), (\beta t, w)] := (0, \alpha t(w) - \beta t(v))$$

and

$$(\alpha t, v)^[p] = (\alpha^p t, \alpha^{p-1} t^{p-1}(v)).$$

Abstract representation theory shows:

- $U_0(g(t, V))$ is representation-finite $\iff \dim_k V \leq 1$.
- $U_0(g(t, V))$ is tame $\iff \dim_k V = 2$ and $p = 2$.
Proposition

Suppose that $p \geq 3$, and let G be a solvable infinitesimal group. Then $B^0(G)$ is either representation-finite or wild.
Proposition

Suppose that $p \geq 3$, and let \mathcal{G} be a solvable infinitesimal group.
Proposition

Suppose that $p \geq 3$, and let \mathcal{G} be a solvable infinitesimal group. Then $\mathcal{B}_0(\mathcal{G})$ is either representation-finite or wild.
Quillen 1971: Maxspec$(H^•(G, k))$ is determined by p-elementary abelian subgroups.

Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.

Carlson 1981: Support varieties and rank varieties for finite groups.

Friedlander-Pevtsova 2005: Support spaces for finite group schemes.
Rank Varieties

- Quillen 1971:
 \[\text{Maxspec}(H \otimes (G, k)) \text{ is determined by } p\text{-elementary abelian subgroups.} \]

- Chouinard 1976:
 \[\text{Projectivity of } G\text{-modules is determined by } p\text{-elementary abelian } p\text{-groups.} \]

- Carlson 1981:
 \[\text{Support varieties and rank varieties for finite groups.} \]

- Friedlander-Parshall, Jantzen 1986:
 \[\text{Support spaces for restricted Lie algebras.} \]

- Suslin-Friedlander-Bendel 1997:
 \[\text{Support spaces for infinitesimal group schemes.} \]

- Friedlander-Pevtsova 2005:
 \[\text{Support spaces for finite group schemes.} \]
Quillen 1971: $\text{Maxspec}(H^\bullet(G, k))$ is determined by p-elementary abelian subgroups.
Rank Varieties

- Quillen 1971: $\text{Maxspec}(H^\bullet(G, k))$ is determined by p-elementary abelian subgroups.
- Chouinard 1976:
Quillen 1971: Maxspec($H^\bullet(G,k)$) is determined by p-elementary abelian subgroups.

Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
Quillen 1971: Maxspec(H^\bullet(G, k)) is determined by p-elementary abelian subgroups.

Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.

Carlson 1981:
Rank Varieties

- Quillen 1971: $\text{Maxspec}(H^\bullet(G, k))$ is determined by p-elementary abelian subgroups.
- Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
Rank Varieties

- Quillen 1971: Maxspec(H•(G, k)) is determined by p-elementary abelian subgroups.
- Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
- Friedlander-Parshall, Jantzen 1986:
Quillen 1971: \(\text{Maxspec}(\mathcal{H}^\bullet(G, k)) \) is determined by \(p \)-elementary abelian subgroups.

Chouinard 1976: Projectivity of \(G \)-modules is determined by \(p \)-elementary abelian \(p \)-groups.

Carlson 1981: Support varieties and rank varieties for finite groups.

Rank Varieties

- Quillen 1971: Maxspec($H^\bullet(G, k)$) is determined by p-elementary abelian subgroups.
- Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
- Suslin-Friedlander-Bendel 1997:
Rank Varieties

- Quillen 1971: Maxspec$(H^ullet(G, k))$ is determined by p-elementary abelian subgroups.
- Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
Rank Varieties

- Quillen 1971: Maxspec(\(H^\bullet(G, k)\)) is determined by \(p\)-elementary abelian subgroups.
- Chouinard 1976: Projectivity of \(G\)-modules is determined by \(p\)-elementary abelian \(p\)-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
- Friedlander-Pevtsova 2005:
Rank Varieties

- Quillen 1971: Maxspec($H^\bullet(G, k)$) is determined by p-elementary abelian subgroups.
- Chouinard 1976: Projectivity of G-modules is determined by p-elementary abelian p-groups.
- Carlson 1981: Support varieties and rank varieties for finite groups.
Definition

Let \((g, \mathcal{P})\) be a restricted Lie algebra. The conical variety \(V^g := \{ x \in g; x[\mathcal{P}] = 0 \}\) is called the nullcone of \(g\).

Let \(M\) be a \(U_0(g)\)-module. Then \(V^g(M) := \{ x \in V^g; M|_k[\{x\}] \text{ is not free} \} \cup \{0\}\) is called the rank variety of \(M\).

Remark: Let \(x \in V^g\). Then \(x \in V^g(M) \iff \text{rk}(x^*M) < \dim_k k \mathcal{P}(\mathcal{P} - 1)\).
Definition

Let \((g, [p])\) be a restricted Lie algebra.

The conical variety \(V_g := \{x \in g; x[p] = 0\}\) is called the nullcone of \(g\).

Let \(M\) be a \(U_0(g)\)-module.

Then \(V_g(M) := \{x \in V_g; \text{rk}(xM) \text{ is not free}\} \cup \{0\}\) is called the rank variety of \(M\).

Remark: Let \(x \in V_g\). Then \(x \in V_g(M) \iff \text{rk}(xM) < \dim_k \mathfrak{m}(p - 1)\).
Definition

Let \mathfrak{g} be a restricted Lie algebra. The conical variety

$$V_g := \{ x \in \mathfrak{g}; x^p = 0 \}$$

is called the nullcone of \mathfrak{g}.
Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra. The conical variety

$$\mathcal{V}_g := \{ x \in \mathfrak{g} ; x[p] = 0 \}$$

is called the nullcone of \mathfrak{g}. Let M be a $U_0(\mathfrak{g})$-module.
Definition

Let \((g, [p])\) be a restricted Lie algebra. The conical variety

\[
\mathcal{V}_g := \{ x \in g ; \; x[p] = 0 \}
\]

is called the nullcone of \(g\). Let \(M\) be a \(U_0(g)\)-module. Then

\[
\mathcal{V}_g(M) := \{ x \in \mathcal{V}_g ; \; M|_{k[x]} \text{ is not free} \} \cup \{0\}
\]

is called the rank variety of \(M\).
Definition

Let \((\mathfrak{g}, [p])\) be a restricted Lie algebra. The conical variety

\[\mathcal{V}_\mathfrak{g} := \{ x \in \mathfrak{g} ; x^{[p]} = 0 \} \]

is called the **nullcone** of \(\mathfrak{g}\). Let \(M\) be a \(U_0(\mathfrak{g})\)-module. Then

\[\mathcal{V}_\mathfrak{g}(M) := \{ x \in \mathcal{V}_\mathfrak{g} ; M|_{k[x]} \text{ is not free} \} \cup \{0\} \]

is called the **rank variety** of \(M\).

Remark:
Definition

Let \((\mathfrak{g}, [p])\) be a restricted Lie algebra. The conical variety

\[
\mathcal{V}_g := \{x \in \mathfrak{g} ; \ x^{[p]} = 0\}
\]

is called the **nullcone** of \(\mathfrak{g}\). Let \(M\) be a \(U_0(\mathfrak{g})\)-module. Then

\[
\mathcal{V}_g(M) := \{x \in \mathcal{V}_g ; \ M|_{k[x]} \text{ is not free}\} \cup \{0\}
\]

is called the **rank variety** of \(M\).

Remark: Let \(x \in \mathcal{V}_g\).
Definition

Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra. The conical variety

$$\mathcal{V}_g := \{ x \in \mathfrak{g} ; x^{[p]} = 0 \}$$

is called the nullcone of \mathfrak{g}. Let M be a $U_0(\mathfrak{g})$-module. Then

$$\mathcal{V}_g(M) := \{ x \in \mathcal{V}_g ; M|_{k[x]} \text{ is not free} \} \cup \{0\}$$

is called the rank variety of M.

Remark: Let $x \in \mathcal{V}_g$. Then $x \in \mathcal{V}_g(M) \iff$
Definition

Let \((g, [p])\) be a restricted Lie algebra. The conical variety

\[V_g := \{ x \in g \mid x^{[p]} = 0 \} \]

is called the nullcone of \(g\). Let \(M\) be a \(U_0(g)\)-module. Then

\[V_g(M) := \{ x \in V_g \mid M|_{k[x]} \text{ is not free} \} \cup \{0\} \]

is called the rank variety of \(M\).

Remark: Let \(x \in V_g\). Then \(x \in V_g(M) \iff \text{rk}(x_M) < \frac{\dim_k M}{p}(p-1)\).
Example

Let \(g = \text{sl}(2) \). Note that \(V_{\text{sl}(2)} \) is the set of nilpotent \((2 \times 2)\)-matrices, so that
\[
V_{\text{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a^2 + bc = 0 \right\}.
\]
Thus, \(V_{\text{sl}(2)} \) is a two-dimensional, irreducible variety.

Recall that there are exactly \(p \)-simple \(U_0(\text{sl}(2)) \)-modules \(L(i) \) with \(0 \leq i \leq p - 1 \) and \(\dim_k L(i) = i + 1 \).

Let \(x \in V_{\text{sl}(2)} \setminus V_{\text{sl}(2)}(L(i)) \).
\(\Rightarrow \) \(L(i) \) is a free module for the \(p \)-dimensional algebra \(k[x] \).
\(\Rightarrow \) \(p \mid \dim_k L(i) \) and \(i = p - 1 \).

\(L(i) = L(p - 1) \) is the Steinberg module, which is projective.

\(V_{\text{sl}(2)}(L(i)) = \left\{ V_{\text{sl}(2)} : i \neq p - 1 \right\} \setminus \{0\} \) for \(i = p - 1 \).
Example

Let $g = \mathfrak{sl}(2)$.

Note that $V_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that $V_{\mathfrak{sl}(2)} = \{(a \ b
-\ a
) ; a^2 + bc = 0 \}$. Thus, $V_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

Recall that there are exactly p-simple $\mathfrak{u}_0(\mathfrak{sl}(2))$-modules L_i with $0 \leq i \leq p - 1$ with $\dim_k L_i = i + 1$.

Let $x \in V_{\mathfrak{sl}(2)} \setminus V_{\mathfrak{sl}(2)}(L_i)$.

L_i is a free module for the p-dimensional algebra $k[x]$. $p | \dim_k L_i$ and $i = p - 1$. $L_i = L_{p - 1}$ is the Steinberg module, which is projective.

$V_{\mathfrak{sl}(2)}(L_i) = \{ V_{\mathfrak{sl}(2)}(i) \neq p - 1 \} \{ 0 \}$.

Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that

$$\mathcal{V}_{\mathfrak{sl}(2)} = \{ (a \ b
\ c \ -a) ; a^2 + bc = 0 \}.$$
Example

Let \(g = \mathfrak{sl}(2) \).

- Note that \(\mathcal{V}_{\mathfrak{sl}(2)} \) is the set of nilpotent \((2 \times 2)\)-matrices, so that
 \[
 \mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \mid a^2 + bc = 0 \right\}.
 \]
Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[\mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \right\}. \]

Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.
Example

Let \(g = sl(2) \).

- Note that \(V_{sl(2)} \) is the set of nilpotent \((2 \times 2)\)-matrices, so that
 \[
 V_{sl(2)} = \{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \}.
 \]
 Thus, \(V_{sl(2)} \) is a two-dimensional, irreducible variety.

- Recall that there are exactly \(p \)-simple \(U_0(sl(2)) \)-modules \(L(i) \)
 \(0 \leq i \leq p-1 \) with \(\dim_k L(i) = i+1 \).
Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[\mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \right\}. \]
 Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ $0 \leq i \leq p-1$ with $\dim_k L(i) = i+1$.
 - Let $x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i))$.

\[\Rightarrow \]

\[\Rightarrow \]

\[\Rightarrow \]

\[\Rightarrow \]
Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[\mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a^2 + bc = 0 \right\}. \]
 Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ with $0 \leq i \leq p-1$ and $\dim_k L(i) = i+1$.
 - Let $x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i))$.
 - $\rightsquigarrow L(i)$ is a free module for the p-dimensional algebra $k[x]$.

Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[\mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \right\}. \]
 Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ $0 \leq i \leq p-1$ with $\dim_k L(i) = i+1$.
 - Let $x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i))$.
 - $\rightsquigarrow L(i)$ is a free module for the p-dimensional algebra $k[x]$.
 - $\rightsquigarrow p| \dim_k L(i)$ and $i = p-1$.
Example

Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[
 \mathcal{V}_{\mathfrak{sl}(2)} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \ ; \ a^2 + bc = 0 \right\}.
 \]
 Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ $0 \leq i \leq p-1$ with $\dim_k L(i) = i+1$.
 - Let $x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i))$.
 - $\mapsto L(i)$ is a free module for the p-dimensional algebra $k[x]$.
 - $\mapsto p | \dim_k L(i)$ and $i = p-1$.
 - $L(i) = L(p-1)$ is the Steinberg module, which is projective.
Example

Let \(g = \mathfrak{sl}(2) \).

- Note that \(\mathcal{V}_{\mathfrak{sl}(2)} \) is the set of nilpotent \((2 \times 2)\)-matrices, so that
 \[
 \mathcal{V}_{\mathfrak{sl}(2)} = \{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \}.
 \]
 Thus, \(\mathcal{V}_{\mathfrak{sl}(2)} \) is a two-dimensional, irreducible variety.

- Recall that there are exactly \(p \)-simple \(U_0(\mathfrak{sl}(2)) \)-modules \(L(i) \) \(0 \leq i \leq p-1 \) with \(\dim_k L(i) = i+1 \).
 - Let \(x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i)) \).
 - \(\rightarrow L(i) \) is a free module for the \(p \)-dimensional algebra \(k[x] \).
 - \(\rightarrow p | \dim_k L(i) \) and \(i = p-1 \).
 - \(L(i) = L(p-1) \) is the Steinberg module, which is projective.

\[
\mathcal{V}_{\mathfrak{sl}(2)}(L(i)) = \]
Example

Let $g = \mathfrak{sl}(2)$.

- Note that $V_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that
 \[V_{\mathfrak{sl}(2)} = \{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \mid a^2 + bc = 0 \} \]

 Thus, $V_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ $0 \leq i \leq p-1$ with $\dim_k L(i) = i+1$.

 - Let $x \in V_{\mathfrak{sl}(2)} \setminus V_{\mathfrak{sl}(2)}(L(i))$.

 - $\Rightarrow L(i)$ is a free module for the p-dimensional algebra $k[x]$.

 - $\Rightarrow p \mid \dim_k L(i)$ and $i = p-1$.

 - $L(i) = L(p-1)$ is the Steinberg module, which is projective.

 \[V_{\mathfrak{sl}(2)}(L(i)) = \begin{cases} V_{\mathfrak{sl}(2)} & i \neq p-1 \\ \{0\} & i = p-1 \end{cases} \]
Example
Let $g = \mathfrak{sl}(2)$.

- Note that $\mathcal{V}_{\mathfrak{sl}(2)}$ is the set of nilpotent (2×2)-matrices, so that

\[\mathcal{V}_{\mathfrak{sl}(2)} = \{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} ; \ a^2 + bc = 0 \}. \]

Thus, $\mathcal{V}_{\mathfrak{sl}(2)}$ is a two-dimensional, irreducible variety.

- Recall that there are exactly p-simple $U_0(\mathfrak{sl}(2))$-modules $L(i)$ $0 \leq i \leq p-1$ with $\dim_k L(i) = i+1$.

 - Let $x \in \mathcal{V}_{\mathfrak{sl}(2)} \setminus \mathcal{V}_{\mathfrak{sl}(2)}(L(i))$.
 - $\implies L(i)$ is a free module for the p-dimensional algebra $k[x]$.
 - $\implies p \mid \dim_k L(i)$ and $i = p-1$.
 - $L(i) = L(p-1)$ is the Steinberg module, which is projective.

\[\mathcal{V}_{\mathfrak{sl}(2)}(L(i)) = \begin{cases} \mathcal{V}_{\mathfrak{sl}(2)} & i \neq p-1 \\ \{0\} & i = p-1 \end{cases}. \]
Notation:

Theorem (Jantzen, Friedlander-Parshall) Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism $\Psi: V(\mathfrak{g})_k \rightarrow V\mathfrak{g}$ such that $\Psi(V(\mathfrak{g})_M) = V\mathfrak{g}(M)$ for every $M \in \text{mod} U_0(\mathfrak{g})$.

Corollary Let G be a finite algebraic group with Lie algebra \mathfrak{g}.

1. If $B_0(G)$ is representation-finite, then $\dim V\mathfrak{g} \leq 1$.

2. If $B_0(G)$ is tame, then $\dim V\mathfrak{g} \leq 2$.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.
Notaion: $V(\mathfrak{g})_M$ is the support variety of a $U_0(\mathfrak{g})$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(\mathfrak{g}, [\mathfrak{p}])$ be a restricted Lie algebra. Then there exists a homeomorphism $\Psi: V(\mathfrak{g}) k \rightarrow V\mathfrak{g}$ such that $\Psi(V(\mathfrak{g}) M) = V\mathfrak{g}(M)$ for every $M \in \text{mod} U_0(\mathfrak{g})$.

Corollary

1. If $B_0(G)$ is representation-finite, then $\dim V\mathfrak{g} \leq 1$.
2. If $B_0(G)$ is tame, then $\dim V\mathfrak{g} \leq 2$.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(g, [p])$ be a restricted Lie algebra.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism

$$
\Psi : V(g)_k \longrightarrow V_g
$$
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism

$$
\Psi : V(g)_k \longrightarrow V_g
$$

such that $\Psi(V(g)_M) = V_g(M)$ for every $M \in \text{mod } U_0(g)$.

Corollary

1. If $B_0(G)$ is representation-finite, then $\dim V_g \leq 1$.
2. If $B_0(G)$ is tame, then $\dim V_g \leq 2$.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall):

Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism

$$\Psi : V(g)_k \longrightarrow V_g$$

such that $\Psi(V(g)_M) = V_g(M)$ for every $M \in \text{mod } U_0(g)$.

Corollary

1. If $B^0(G)$ is representation-finite, then $\dim V_g \leq 1$.
2. If $B^0(G)$ is tame, then $\dim V_g \leq 2$.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism

$$
\Psi : V(g)_k \longrightarrow V_g
$$

such that $\Psi(V(g)_M) = V_g(M)$ for every $M \in \text{mod } U_0(g)$.

Corollary

Let G be a finite algebraic group with Lie algebra g.
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

<table>
<thead>
<tr>
<th>Theorem (Jantzen, Friedlander-Parshall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism $\Psi : V(g)_k \longrightarrow V_g$ such that $\Psi(V(g)_M) = V_g(M)$ for every $M \in \text{mod } U_0(g)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a finite algebraic group with Lie algebra g.</td>
</tr>
<tr>
<td>1. If $B_0(G)$ is representation-finite, then $\dim V_g \leq 1$.</td>
</tr>
</tbody>
</table>
Notation: $V(g)_M$ is the support variety of a $U_0(g)$-module M.

Theorem (Jantzen, Friedlander-Parshall)

Let $(g, [p])$ be a restricted Lie algebra. Then there exists a homeomorphism

$$
\Psi : V(g)_k \longrightarrow V_g
$$

such that $\Psi(V(g)_M) = V_g(M)$ for every $M \in \mod U_0(g)$.

Corollary

Let G be a finite algebraic group with Lie algebra g.

1. If $B_0(G)$ is representation-finite, then $\dim V_g \leq 1$.
2. If $B_0(G)$ is tame, then $\dim V_g \leq 2$.
Why didn’t we introduce rank varieties to begin with?
Why didn’t we introduce rank varieties to begin with?

Corollary

Let \((g, [p])\) be a restricted Lie algebra, \(M\) be a \(U_0(g)\)-module. Then the following statements are equivalent:

1. \(M\) is projective.
2. \(V_g(M) = \{0\}\).
Why didn’t we introduce rank varieties to begin with?

Corollary

Let $(\mathfrak{g}, [p])$ be a restricted Lie algebra, M be a $U_0(\mathfrak{g})$-module.
Why didn’t we introduce rank varieties to begin with?

Corollary

Let \mathfrak{g} be a restricted Lie algebra, M be a $U_0(\mathfrak{g})$-module. Then the following statements are equivalent:
Why didn’t we introduce rank varieties to begin with?

Corollary

Let \((\mathfrak{g}, [p])\) be a restricted Lie algebra, \(M\) be a \(U_0(\mathfrak{g})\)-module. Then the following statements are equivalent:

1. \(M\) is projective.
Why didn’t we introduce rank varieties to begin with?

Corollary

Let \((\mathfrak{g}, [p])\) be a restricted Lie algebra, \(M\) be a \(U_0(\mathfrak{g})\)-module. Then the following statements are equivalent:

1. \(M\) is projective.
2. \(\mathcal{V}_\mathfrak{g}(M) = \{0\}\).
Proof.

Suppose \(M \) is projective. Let \(x \in V(g(M)) \).

By the PBW-Theorem, \(U_0(g) \) is a free \(k[x] \)-module.

Hence \(M|_{k[x]} \) is projective, so that \(x = 0 \).

(2) \(\Rightarrow \) (1).

If \(V(g(M)) = \{0\} \), then \(\dim V(g(M)) = 0 \).

\(\Phi_M : H^\bullet(g, k) \to \text{Ext}^\bullet U_0(g)(M, M) \) is a finite morphism.

Since \(\dim H^\bullet(g, k) / \ker \Phi_M = 0 \), the algebra \(\text{Ext}^\bullet U_0(g)(M, M) \) is finite-dimensional.

Hence there exists \(n_0 \in \mathbb{N} \) such that \(\text{Ext}^n U_0(g)(M, -) = 0 \) for all \(n \geq n_0 \).

\(\Rightarrow \) \(M \) has finite projective dimension.

\(U_0(g) \) is a Hopf algebra and hence self-injective.

\(\Rightarrow \) \(M \) is projective.
Proof.

(1) \implies (2).

Suppose M is projective. Let $x \in V_{g}(M)$. By the PBW-Theorem, $U_{0}(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) \implies (1).

If $V_{g}(M) = \{0\}$, then $\dim V_{g}(M) = 0$. \(\Phi_{M}: H_{\bullet}(g, k) \rightarrow \text{Ext}^{\bullet}U_{0}(g)(M, M)\) is a finite morphism. Since $\dim H_{\bullet}(g, k)/\ker \Phi_{M} = 0$, the algebra $\text{Ext}^{\bullet}U_{0}(g)(M, M)$ is finite-dimensional. Hence there exists $n_{0} \in \mathbb{N}$ such that $\text{Ext}^{n}U_{0}(g)(M, -) = 0$ for all $n \geq n_{0}$.

$\Rightarrow M$ has finite projective dimension.

$U_{0}(g)$ is a Hopf algebra and hence self-injective. \(\Rightarrow M\) is projective.
Proof.

(1) ⇒ (2). Suppose M is projective.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$.

\Rightarrow M has finite projective dimension.

\Rightarrow $U_0(g)$ is a Hopf algebra and hence self-injective.

\Rightarrow M is projective.
Proof.

(1) \Rightarrow (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_{\mathfrak{g}}(M)$. By the PBW-Theorem, $U_0(\mathfrak{g})$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.
Proof.

(1) ⇒ (2). Suppose \(M \) is projective. Let \(x \in \mathcal{V}_g(M) \). By the PBW-Theorem, \(U_0(g) \) is a free \(k[x] \)-module. Hence \(M|_{k[x]} \) is projective, so that \(x = 0 \).

(2) ⇒ (1).
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim V(g)_M = 0$.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim V(g)_M = 0$.
- $\Phi_M : H^\bullet(g, k) \longrightarrow \text{Ext}^\bullet_{U_0(g)}(M, M)$ is a finite morphism.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim V(g)_M = 0$.
- $\Phi_M : H^\bullet(g, k) \longrightarrow \text{Ext}^*_{U_0(g)}(M, M)$ is a finite morphism.
- Since $\dim H^\bullet(g, k)/\ker \Phi_M = 0$, the algebra $\text{Ext}^*_{U_0(g)}(M, M)$ is finite-dimensional.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim V(g)_M = 0$.
- $\Phi_M: H^\bullet(g, k) \longrightarrow \text{Ext}^*_{U_0(g)}(M, M)$ is a finite morphism.
- Since $\dim H^\bullet(g, k)/\ker \Phi_M = 0$, the algebra $\text{Ext}^*_{U_0(g)}(M, M)$ is finite-dimensional.
- Hence there exists $n_0 \in \mathbb{N}$ such that $\text{Ext}^n_{U_0(g)}(M, -) = 0$ for all $n \geq n_0$.

$U_0(g)$ is a Hopf algebra and hence self-injective.
\Rightarrow M is projective.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim V(g)_M = 0$.
- $\Phi_M : H^\bullet(g, k) \to \text{Ext}^\bullet_{U_0(g)}(M, M)$ is a finite morphism.
- Since $\dim H^\bullet(g, k)/ \ker \Phi_M = 0$, the algebra $\text{Ext}^\bullet_{U_0(g)}(M, M)$ is finite-dimensional.
- Hence there exists $n_0 \in \mathbb{N}$ such that $\text{Ext}^n_{U_0(g)}(M, -) = 0$ for all $n \geq n_0$.
- $\rightsquigarrow M$ has finite projective dimension.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim \mathcal{V}(g)_M = 0$.
- $\Phi_M : H^\bullet(g, k) \longrightarrow \text{Ext}^*_U(M, M)$ is a finite morphism.
- Since $\dim H^\bullet(g, k)/\ker \Phi_M = 0$, the algebra $\text{Ext}^*_U(M, M)$ is finite-dimensional.
- Hence there exists $n_0 \in \mathbb{N}$ such that $\text{Ext}^n_U(M, -) = 0$ for all $n \geq n_0$.
- $\Rightarrow M$ has finite projective dimension.
- $U_0(g)$ is a Hopf algebra and hence self-injective.
Proof.

(1) ⇒ (2). Suppose M is projective. Let $x \in \mathcal{V}_g(M)$. By the PBW-Theorem, $U_0(g)$ is a free $k[x]$-module. Hence $M|_{k[x]}$ is projective, so that $x = 0$.

(2) ⇒ (1).

- If $\mathcal{V}_g(M) = \{0\}$, then $\dim \mathcal{V}(g)_{|M} = 0$.
- $\Phi_M : H^\bullet(g, k) \longrightarrow \operatorname{Ext}^\bullet_{U_0(g)}(M, M)$ is a finite morphism.
- Since $\dim H^\bullet(g, k)/\ker \Phi_M = 0$, the algebra $\operatorname{Ext}^\bullet_{U_0(g)}(M, M)$ is finite-dimensional.
- Hence there exists $n_0 \in \mathbb{N}$ such that $\operatorname{Ext}_{U_0(g)}^n(M, -) = 0$ for all $n \geq n_0$.
- $\Rightarrow M$ has finite projective dimension.
- $U_0(g)$ is a Hopf algebra and hence self-injective. $\Rightarrow M$ is projective.
\[\dim \mathcal{V}_g(M) \] has a representation-theoretic interpretation.
- $\dim \mathcal{V}_g(M)$ has a representation-theoretic interpretation.
- $\dim \mathcal{V}_g(M) = \text{cx}_{U_0(g)}(M)$ is the complexity of M,
• $\dim V_g(M)$ has a representation-theoretic interpretation.

• $\dim V_g(M) = \text{cx}_{U_0(g)}(M)$ is the complexity of M, that is, the polynomial rate of growth of a minimal projective resolution of M.

Periodic modules play an important role in Auslander-Reiten theory.
dim \mathcal{V}_g(M) has a representation-theoretic interpretation.

\[\dim \mathcal{V}_g(M) = \text{cx}_{U_0(g)}(M) \] is the complexity of \(M \), that is, the polynomial rate of growth of a minimal projective resolution of \(M \).

\[\dim \mathcal{V}_g(M) = 0 \iff \]
\begin{itemize}
 \item $\dim \mathcal{V}_g(M)$ has a representation-theoretic interpretation.
 \item $\dim \mathcal{V}_g(M) = \text{cx}_{U_0(g)}(M)$ is the complexity of M, that is, the polynomial rate of growth of a minimal projective resolution of M.
 \item $\dim \mathcal{V}_g(M) = 0 \Leftrightarrow M$ is projective.
 \item Periodic modules play an important role in Auslander-Reiten theory.
\end{itemize}
- \(\dim \mathcal{V}_g(M) \) has a representation-theoretic interpretation.
- \(\dim \mathcal{V}_g(M) = cx_{U_0(g)}(M) \) is the complexity of \(M \), that is, the polynomial rate of growth of a minimal projective resolution of \(M \).
- \(\dim \mathcal{V}_g(M) = 0 \Leftrightarrow M \) is projective.
- \(\dim \mathcal{V}_g(M) = 1 \Leftrightarrow \) Periodic modules play an important role in Auslander-Reiten theory.
- \(\dim \mathcal{V}_g(M) \) has a representation-theoretic interpretation.
- \(\dim \mathcal{V}_g(M) = \text{cx}_{U_0(g)}(M) \) is the complexity of \(M \), that is, the polynomial rate of growth of a minimal projective resolution of \(M \).
- \(\dim \mathcal{V}_g(M) = 0 \iff M \) is projective.
- \(\dim \mathcal{V}_g(M) = 1 \iff M \) is periodic.
- \(\dim V_g(M) \) has a representation-theoretic interpretation.
- \(\dim V_g(M) = cx_{U_0(g)}(M) \) is the complexity of \(M \), that is, the polynomial rate of growth of a minimal projective resolution of \(M \).
- \(\dim V_g(M) = 0 \iff M \text{ is projective.} \)
- \(\dim V_g(M) = 1 \iff M \text{ is periodic.} \)
- Periodic modules play an important role in Auslander-Reiten theory.