

DEPT. OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 1409 WEST GREEN STREET, URBANA, IL 61801, USA

E-mail address: kapovich@math.uiuc.edu

Fakultät für Mathematik, Ruhr-Universität Bochum, Germany

E-mail address: Richard.Weidmann@ruhr-uni-bochum.de

$2M(k_1 - 1) + (K(k)(2k_1 - 1) + 100(k_1 - 1))\delta + 100\delta + 2M + \delta K(k) \leq 2MK_1 + (K(k)(2k_1 + 1) + 100k_1)\delta$

This implies that $M' = (\mathcal{S}'_1, \mathcal{S}'_2, \ldots, \mathcal{S}'_n; H')$ is good, where $H = (h_1, \ldots, h_{m-1})$. As before, this contradicts the minimality assumption on the complexity of M.

(3) Suppose that $d(y, h_m) \leq \delta K(k)$ for some $y \in X$. In this case we replace M by

$$M' = (\mathcal{S}'_1, \ldots, \mathcal{S}'_n, \mathcal{S}'_{n+1}; H')$$

where $\mathcal{S}'_{n+1} = (h_m)$ and $H' = (h_1, \ldots, h_{m-1})$.

By assumption on S we have $h_m \neq 1$. Hence M' good and of smaller complexity than M, which again yields a contradiction.

The above theorem has an immediate corollary for very small actions on real trees.

Corollary 12.6. Let G be a finitely generated freely indecomposable non-elementary group which acts by isometries on an \mathbb{R}-tree X with trivial arc stabilizers. Then for any $\epsilon > 0$ and any finite generating set Y of G there is a set S Nielsen-equivalent to Y and a point $x \in X$ such that $d(x, sx) \leq \epsilon$ for all $s \in S$.

If we restrict ourselves to simplicial trees this recovers the bound for acylindrical splitting of finitely generated groups exhibited in [41]:

Theorem 12.7. Let G be a non-infinite cyclic freely indecomposable group which is generated by k elements. Let \mathbf{A} be a minimal M-acylindrical graph of groups representing G. Then \mathbf{A} has at most $2M(k-1)$ edges.

Proof. We only need to apply the fact that the measure of a approximating tree Y_G is at least as great as the measure of the graph Γ underlying the graph of groups. This holds since the set GY_G is clearly connected and G-invariant. It must therefore contain the minimal invariant subtree, see also [6] for details. Since for any $\epsilon > 0$ there exists a generating tree of measure at most $2M(k-1) + \epsilon$ this implies that Γ has at most $2M(k-1)$ edges. \qed

References

Set
\[\delta := \frac{\epsilon}{K(k)(2k - 1) + 100(k - 1)}. \]

Clearly X is δ-hyperbolic. We will show that there exists a generating tree Y_G of measure at most $2M(k - 1) + (K(k)(2k - 1) + 100(k - 1))\delta = 2M(k - 1) + \epsilon$ which is the conclusion of Theorem 12.5.

Let $N = (S_1, \ldots S_n; H)$ be a partitioned tuple of elements of G. We say that N is good if $U_i = \langle S_i \rangle \neq 1$ for all $i \geq 1$ and if for each $i \geq 1$ there exists a generating tree Y_i of measure at most $2M(k_i - 1) + (K(k_i)(2k_i - 1) + 100(k_i - 1))\delta$ where $k_i = L(S_i)$.

We define N_1 to be the partitioned tuple $N_1 = (S; S)$. Clearly N_1 is good.

We define the complexity of a partitioned tuple and the well-ordering on \mathbb{N}^2 exactly as in the proof of Theorem 10.8. Let $M = (S_1, \ldots, S_n; H)$ with $H = (h_1, \ldots, h_m)$ be a partitioned good tuple of minimal cardinality such that the underlying tuple of M is Nielsen equivalent to S. In particular we have $m + n \leq k$.

We will show that $M = (S_i; -)$ which clearly implies the assertion of Theorem 12.5. Suppose that M is not of this type. Recall that G is freely indecomposable and not infinite cyclic. It follows from Theorem 2.4 as in the proof of Theorem 10.8 that we can replace M by a good partitioned tuple $\tilde{M} = (\tilde{S}_1, \ldots, \tilde{S}_n, \tilde{H})$ of the same complexity as M with $\tilde{H} = (\tilde{h}_1, \ldots, \tilde{h}_m)$ such that the underlying tuple of \tilde{M} is Nielsen equivalent to S after a conjugation and such that the following holds. If we denote $\tilde{U}_i = \langle \tilde{S}_i \rangle$ for $1 \leq i \leq n$ then at least one of the following occurs:

1. $d(X(\tilde{U}_1), X(\tilde{U}_2)) \leq \delta K(k)$;
2. $d(X(\tilde{U}_1), \tilde{h}_m X(\tilde{U}_1)) \leq \delta K(k)$;
3. $d(y, \tilde{h}_m y) \leq \delta K(k)$ for some $y \in X$.

Note that since both M and \tilde{M} generate G, they are in fact Nielsen-equivalent and not simply Nielsen-equivalent after a conjugation.

Denote $k_i = L(S_i)$. For $1 \leq i \leq n$.

1. Suppose that $d(X(\tilde{U}_1), X(\tilde{U}_2)) \leq \delta K(k)$. Choose $x_1 \in X(\tilde{U}_1)$ and $x_2 \in X(\tilde{U}_2)$ such that $d(x_1, x_2) \leq \delta K(k)$. By part (2) of Lemma 12.4 there is $y_i \in T_{\tilde{G}_i}$ such that $d(y_i, x_i) \leq 5\delta + M$ for $i = 1, 2$. It follows that $d(y_i, y_2) \leq 100\delta + 2M + \delta K(k)$. Since by assumption \tilde{M} is good, we can choose a generating tree $Y_{\tilde{G}_i}$ for \tilde{U}_i of measure at most $2M(k_i - 1) + (K(k_i)(2k_i - 1) + 100(k_i - 1))\delta$. Since $T_{\tilde{G}_i} \subset \tilde{C}_i Y_{\tilde{G}_i}$, there exists $u_i \in \tilde{U}_i$ such that $y_i \in u_i Y_{\tilde{G}_i}$ for $i = 1, 2$.

Denote $S'_i := u_i S_i u_i^{-1}$ for $i = 1, 2$. Then $\langle S'_1 \rangle = \langle S_i \rangle = \tilde{U}_i$ and $u_i Y_{\tilde{G}_i}$ is the generating tree for \tilde{U}_i with respect to the generating set S'_i.

Moreover S'_i is Nielsen-equivalent to S_i since $u_i \in \tilde{U}_i$ for $i = 1, 2$. Put $V := \langle \tilde{C}_1, \tilde{C}_2 \rangle$. Then clearly $Y_V = u_1 Y_{\tilde{C}_1} \cup [y_1, y_2] \cup u_2 Y_{\tilde{C}_2}$ is a generating tree for V with respect to $S'_1 \cup S'_2$. The measure of Y_V is clearly at most

\[2M(k_1 - 1) + (K(k)(2k_1 - 1) + 100(k_1 - 1))\delta + 2M(k_2 - 1) + \\
+ (K(k)(2k_2 - 1) + 100(k_2 - 1))\delta + 100\delta + 2M + \delta K(k) = \\
= 2M(k_1 + k_2 - 1) + (K(k)(2k_1 + 2k_2 - 1) + 100(k_1 + k_2 - 1))\delta. \]

Hence the partitioned tuple $M' := (S'_1 \cup S'_2, S_3, \ldots, S_n; H)$ is good. Since the underlying tuple of M' is Nielsen equivalent to S and since M' has smaller complexity than M, we obtain a contradiction with the choice of M.

2. Suppose that $d(X(\tilde{U}_1), \tilde{h}_m X(\tilde{U}_1)) \leq \delta K(k)$. As in (1) we see that there exist $y_1 \in T_{\tilde{G}_1}$ and $y_2 \in \tilde{h}_m T(\tilde{U}_1)$ such that $d(y_1, y_2) \leq 100\delta + 2M + \delta K(k)$. As in (1), since \tilde{M} is good, after replacing S_1 by a Nielsen equivalent tuple we can assume that there exists a generating tree $Y_{\tilde{G}_1}$ of measure at most $2M(k_1 - 1) + (K(k)(2k_1 - 1) + 100(k_1 - 1))\delta$ such that $y_1 \in Y_{\tilde{G}_1}$. Now $Y_{\tilde{U}_1} = Y_{\tilde{G}_1} \cup [y_1, y_2]$ is obviously a generating tree for $V_i := \langle S'_1 \rangle$ where $S'_1 = S_i \cup \{h_m\}$.

Moreover, the measure of $Y_{\tilde{U}_1}$ is at most
1. Let \(y \in X \) be such that \(d(y, T_U) = R \). Then for any \(u \in U, u \neq 1 \) we have
\[
d(y, uy) \geq 2R - 2M.
\]

2. Let \(\delta > 0 \) be an arbitrary number and let \(X(U) \) and \(E(U) \) be the convex hull
and the small displacement sets relative \(\delta \). Then the set \(E(U) \) is contained in
the \((50\delta + M)\)-neighborhood of \(T_U \). Moreover, \(X(U) \) and \(T_U \) are \((50\delta + M)\)-
Hausdorff close.

Proof. (1) Let \(x, y \in T_U \) be such that \(d(y, x) = d(y, T_U) = R \). Then \(uz \in T_U \) and
\(d(uy, uz) = d(uy, T_U) = R \). Then for any \(t \in T_U \) the path \([y, x] \cup [x, t]\) is a
godesic, since otherwise \(x \) would not be the closest point
to \(y \) in \(T_U \). If \(uz \neq x \) then \([y, x] \cup [x, uz] \cup [uz, uy]\) is a godesic. Hence
\(d(y, uy) \geq 2R - 2M \), as required.

Suppose now that \(uz = x \). Let \(p \in X \) be such that \([x, p] = [x, y] \cap [x, uy]\). Then \([x, p]\) is point-wise
fixed by \(u \). Since by assumption \(u \neq 1 \) and the action is \(M \)-acylindrical, this means that
\(d(x, p) \leq M \). We have \(d(y, p) = d(uy, up) = d(uy, p) \geq R - M \). The path \([y, p] \cup [p, uz]\) is a godesic. Therefore
\(d(y, uy) \geq 2R - 2M \), as required.

(2) The definition of \(E(U) \) together with part (1) imply that \(E(U) \) is contained in the \((50\delta + M)\)-
neighborhood of \(T_U \). We already know that \(T_U \subseteq X(U) \), that \(Conv(AU) \subseteq T_U \) and that \(T_U \) and \(X(U) \)
are subtrees of \(X \). By definition \(X(U) = Conv(E(U) \cup AU) \), which implies that \(X(U) \) is contained in
the \((50\delta + M)\)-neighborhood of \(T_U \). Thus \(T_U \) and \(X(U) \) are \((50\delta + M)\)-Hausdorff close.

If \(Y \) is a finite subtree of an \(\mathbb{R} \)-tree \(X \), then \(Y \) can be represented as a union of
finitely many closed intervals with disjoint interiors. The sum of the length of these intervals will be called the
measure of \(Y \). It is clear that this notion does not depend on the particular choice of cutting \(Y \) into intervals.

We can now mimic the proof of Theorem 10.8 and obtain our main result for groups acting on \(\mathbb{R} \)-trees.

Theorem 12.5. Let \(M \geq 0 \) be a real number. Let \(G \) be a freely indecomposable non-infinite cyclic
finitely generated group acting by isometries on an \(\mathbb{R} \)-tree \(X \) and suppose that the action is
\(M \)-acylindrical. Let \(\epsilon > 0 \) be an arbitrary number and let \(U \leq G \) be a subgroup generated by a tuple \(S = (s_1, \ldots, s_k) \), where \(k \geq 1 \). Then there exists a tree \(Y_U \subset X \) of measure at most \(2M(k - 1) + \epsilon \) and a tuple \(\tilde{S} = (\tilde{s}_1, \ldots, \tilde{s}_k) \) that is Nielsen equivalent to \(S \) such that \(Y_U \) is a generating tree for \(U \) with respect to \(\{\tilde{s}_1, \ldots, \tilde{s}_k\} \).

Before we give the proof of Theorem 12.5 we argue that it immediately implies Theorem 1.8.

Proof of Theorem 1.8. Let \(S = (s_1, \ldots, s_k) \) be a generating tuple of \(G \). It follows from Theorem 12.5 that
there exists a generating tree \(Y_G \) of measure at most \(2M(k - 1) + \epsilon \) and a tuple \(\tilde{S} = (\tilde{s}_1, \ldots, \tilde{s}_k) \) which is Nielsen equivalent to \(S \) and such that \(\tilde{s}_iY_G \cap Y_G \neq 0 \) for \(1 \leq i \leq k \). Since \(Y_G \) is a tree, there exists a point \(x \in Y_G \) such that
\(d(x, y) \leq \frac{1}{2}(2M(k - 1) + \epsilon) \) for any point \(y \in Y_G \). For \(1 \leq i \leq k \) choose \(y_i \) such
that \(y_i \in Y_G \cap \tilde{s}_iY_G \). Then \(d(x, y_i) \leq \frac{1}{2}(2M(k - 1) + \epsilon) \) and \(d(\tilde{s}_i x, y_i) \leq \frac{1}{2}(2M(k - 1) + \epsilon) \). The triangle
inequality now yields \(d(x, \tilde{s}_i x) \leq 2M(k - 1) + \epsilon \) for \(1 \leq i \leq k \) which proves the assertion of Theorem 1.8.

We proceed with the proof of Theorem 12.5

Proof of Theorem 12.5.

We will prove Theorem 12.5 by induction on \(k \). Suppose first \(k = 1 \), so that \(G = \langle s_1 \rangle \). Since by
assumption \(G \) is not infinite cyclic, the element \(s_1 \) has finite order and so \(G \) is a finite cyclic group.
Therefore \(G \) fixes some point \(x \in X \). Then \(Y_U := \{x\} \) is a generating tree for \(G \) with respect to \(S = (s_1) \)
and the conclusion of Theorem 12.5 obviously holds.

Suppose now \(k > 1 \) and that Theorem 12.5 has been proved for all smaller values of \(k \).

Suppose \(S = (s_1, \ldots, s_k) \) is a generating set of \(G \). If \(S \) is Nielsen-equivalent to some tuple containing
an entry equal \(1 \), the statement of Theorem 12.5 follows from the induction hypothesis. Thus we may
assume that for any \(k \)-tuple Nielsen-equivalent to \(S \) the entries of this tuple are non-trivial and pairwise
distinct.
We now define good partitioned tuples exactly as in the proof of Theorem 10.8 and follow precisely the proof of Theorem 10.8. The same argument shows that \(H_0 := (g_1, \ldots , g_k) \) (applied to \(l = k - 1 \)) shows that \(H_0 \) is Nielsen-equivalent to a tuple of the form \((g_1 g_2^{-1}, \ldots , g_1 g_k g_1^{-1}) \) where \(|g_i| < C = C(G, S, \delta, k, k - 1) \) for \(i = 1, \ldots , k \) (and where \(C \) is defined exactly as in the proof of Theorem 10.8). Indeed, in the proof of Theorem 10.8 we did not need the full strength of the assumption that all \(l \)-generated subgroups of \(G \) be quasiconvex. It was sufficient to know that for any tuple \(H \) Nielsen-equivalent to \(H_0 \) any \(l \) entries of \(H \) generate a quasiconvex subgroup of \(G \). This condition is clearly satisfied in the present case for any \(l \leq k - 1 \).

This implies the statement of Theorem 1.7.

12. Applications to groups acting on real trees

Recall that a \(\mathbb{R} \)-tree is a 0-hyperbolic geodesic metric space. Moreover, it is easy to see that an \(\mathbb{R} \)-tree is also strongly geodesic and is \(\delta \)-hyperbolic for any \(\delta > 0 \). We can give a more explicit description of the sets \(X(U), X_U \) and \(E(U) \) for groups acting on \(\mathbb{R} \)-trees. We define generating trees as in [6]:

Definition 12.1. Let \(G \) be a group acting by isometries on an \(\mathbb{R} \)-tree \(X \) and \(U = \langle S \rangle \) be a subgroup. We say that a tree \(Y_S \subset X \) is a generating tree of \(U \) with respect to \(S \) if \(Y \cap sY \neq \emptyset \) for all \(s \in S \). We further say that \(Y_U \) is a generating tree of \(U \) if \(Y_U \) is a generating tree for \(U \) with respect to some generating set \(S' \) of \(U \).

It is easy to see that if \(Y_S \) is a generating tree of \(U \) with respect to a generating set \(S \) of \(U \) then the set \(UY_S \) is connected and \(U \)-invariant. Thus \(UY_S \) contains the minimal \(U \)-invariant subtree of \(X \), provided \(U \) does not have a global fixed point (see the lemma below). This observation justifies the term “generating tree”.

Recall that a group \(U \) acting on a \(\mathbb{R} \)-tree \(X \) either acts with a global fixed point or there exists a unique infinite minimal \(U \)-invariant subtree \(T_U \). In the latter case \(U \) contains hyperbolic elements, and hence the limit set \(\Lambda U \) is non-empty. The following is an immediate consequence of the above definitions:

Lemma 12.2. Let \(X \) be an \(\mathbb{R} \)-tree and let \(\delta > 0 \) be an arbitrary number (so that \(X \) is \(\delta \)-hyperbolic). Let \(U \) be a group acting on \(X \) by isometries. Suppose that \(U \) is generated by a finite set \(S \) and that \(U \) contains a hyperbolic element. Let \(X(U) \) be the convex hull of \(U \) (relative \(\delta \)) and let \(T_U \subset X \) be the minimal \(U \)-invariant subtree of \(X \). Then

1. \(T_U = X_U := \text{Conv}(\Lambda(U)) \) and therefore \(T_U \subset X(U) \).
2. The set \(X(U) \) is connected and therefore a subtree of \(X \).
3. For any generating tree \(Y_U \) the tree \(T_U \cap Y_U \) is a generating tree.
4. For any generating tree \(Y_U \) we have \(T_U \subset UY_U \).
5. If \(Y_U \) is a generating tree for \(U \), then \(gY_U \) is a generating tree for \(gUg^{-1} \).

The following notion due to Z. Sela [35] plays an important role in the theory of groups acting on trees, particularly when various types of JSJ-decompositions are constructed.

Definition 12.3 (Acylindrical action). Let \(G \) be a group acting by isometries on an \(\mathbb{R} \)-tree \(X \). Let \(M \geq 0 \). The action of \(G \) is said to be \(M \)-acylindrical if for any non-trivial element \(g \in G \) the length of any segment of \(X \) fixed by \(g \) is at most \(M \).

Note an action with trivial arc-stabilizers is 0-acylindrical. We can now observe that for acylindrical actions the “small displacement” set \(E(U) \) cannot be too far from the minimal \(U \)-invariant tree \(T_U \).

Lemma 12.4. Let \(U \) be a group acting by isometries on an \(\mathbb{R} \)-tree \(X \) and suppose this action is \(M \)-acylindrical for some \(M \geq 0 \). Let \(T_U \) be the minimal \(U \)-invariant subtree of \(X \) if \(U \) contains a hyperbolic element and let \(T_U \) be any point of \(X \) fixed by \(U \) otherwise. Then the following holds.
results of E. Swenson [40] and T. Delzant [21], the smallest denominator b can be effectively computed for a given finite presentation of a hyperbolic group G. This implies that $||g||_\infty \geq 1/b$ for any non-torsion element $g \in G$.

Second, we need to show that the constant $c_5 = c_5(G, S, \delta, n, C)$ in Lemma 10.5 is computable provided it is known that all n-generated subgroups in G are quasiconvex. Computing constant c_5, apart from dealing with finite subgroups, essentially involves the following calculation.

For a given integer C find the maximum E of quasiconvexity constants among the subgroups of G generated by an n-tuple of elements contained in the ball of radius C (provided all n-generated subgroups of G are known to be quasiconvex). The number of such n-tuples is at most $(m(C)^n = m^G)$ where m is the number of elements in S. As was proved by I. Kapovich in [26], there is an algorithm which, given a tuple of elements generating a quasiconvex subgroup, produces the quasiconvexity constant of this subgroup. Thus E is effectively computable. It is worth noting that the existence of c_5, provided by Lemma 10.5, is the only place in the proof of Theorem 10.8 where we use the assumption that the centralizers in G are cyclic.

11. APPLICATIONS TO 3-MANIFOLDS

In this section we will prove Theorem 1.7 from the introduction. Let M be a closed hyperbolic 3-manifold so that the universal cover \hat{M} is the hyperbolic space \mathbb{H}^3. Let $G = \pi_1(M)$ so that G acts on \mathbb{H}^3 freely, isometrically and discretely with $\mathbb{H}^3/G = M$. Recall that a finitely generated subgroup $K \leq G$ is said to be topologically tame if \mathbb{H}^3/K is homeomorphic to the interior of a compact 3-manifold.

Proof of Theorem 1.7. If M is as in part (1) of Theorem 1.7 then, as observed by G. Swarup [38], G is torsion-free word-hyperbolic and locally quasiconvex. Thus the statement of Theorem 1.7 follows directly from Theorem 1.4.

Suppose now that M is as in part (2) of Theorem 1.7. Thus M is a closed hyperbolic 3-manifold fibering over a circle and such that all finitely generated subgroups of $G = \pi_1(M)$ are topologically tame. Since M is a closed hyperbolic manifold, the universal cover of M is \mathbb{H}^3 and G acts on \mathbb{H}^3 freely and discretely by isometries with $\mathbb{H}^3/G = M$. Recall also that by a result of G. Swarup [38] a finitely generated subgroup K of G is quasiconvex in G if and only if K is geometrically finite with respect to the induced action of H on \mathbb{H}^3.

We will say that a finitely generated group $K \leq G$ is a virtual fiber group if H is commensurable with a fiber group of some finite cover of M. Clearly, any virtual fiber group is not quasiconvex in G. A result of R. Canary [15] implies that under our tameness assumption on G the converse is also true:

A finitely generated subgroup $K \leq G$ is quasiconvex in G if and only if K is not a virtual fiber group.

Let $k \geq 2$ and suppose K is a freely indecomposable subgroup of infinite index in G such that the rank of K is equal to k. That is K can be generated by k elements but cannot be generated by fewer than k elements. Let $Y = \{g_1, \ldots, g_k\} \subset G$ be a set with k-elements such that $\langle g_1, \ldots, g_k \rangle = K$. Note that any proper subset of Y generates a quasiconvex subgroup of G.

Indeed, suppose first that K is a virtual fiber group, that is K is the fundamental group of a closed hyperbolic surface. Then all subgroups of finite index in K have higher rank than K and therefore any proper subset of Y generates a subgroup of infinite index in K. Hence this subgroup is free and so not a virtual fiber group and therefore quasiconvex in G.

Suppose that K is not a virtual fiber group, so that K is quasiconvex. If K does not contain a virtual fiber group then all finitely generated subgroups of K are quasiconvex in G and hence any proper subset of Y generates a quasiconvex subgroup of G. Suppose now that K contains a virtual fiber group K'. Then it is easy to see that K is either commensurable with K' or K has finite index in G, both of which contradict our assumptions on K.

Exactly the same argument implies that for any tuple (g'_1, \ldots, g'_k) Nielsen-equivalent to (g_1, \ldots, g_k) any proper subset of $Y' = \{g'_1, \ldots, g'_k\}$ generates a quasiconvex subgroup of G.
for some $b_j \in G$. In particular the resulting partitioned tuple $M' = (Y_1', \ldots, Y_n'; H')$ is good. Denote $X_j = X(U_j^*)$.

Suppose case (1) of Theorem 2.4 applies to N'. After re-labeling the indices this means that $d(X_1, X_2) \leq \delta K(k)$. After conjugating the partitioned tuple M' and still denoting the result M' we can assume that $Y_1' = (y_1^1, \ldots, y_{n_1}^1)$ with $|y_i^1| \leq R(n_1)$ for $1 \leq i \leq n_1$ and $Y_2' = (y_1^2, \ldots, y_{n_2}^2)$ with $|y_2^2y_2g_2^{-1}| \leq R(n_2)$ for $1 \leq i \leq n_2$ and some $g_2 \in G$. Recall that since M' is a good tuple, we have $n_1, n_2 \leq l$ and hence the subgroups U_1', U_2' are quasiconvex in G by the assumption on G. Recall that $R(i)$ is non-decreasing and that $R(i) \geq \delta K(k)$.

By Lemma 10.6 the $(n_1 + n_2)$-tuple $(y_1^1, \ldots, y_{n_1}^1, g_2y_2^2g_2^{-1}, \ldots, g_2y_2^2g_2^{-1})$ is Nielsen-equivalent after a conjugation to a tuple $(y_1, \ldots, y_{n_1+n_2})$ with $|y_i| \leq c_4(G, S, \delta, n_1, n_2, R(\max(n_1, n_2)))$. If $n_1 + n_2 \geq l + 1$ then this gives the assertion of Theorem 10.8 since $c_4(G, S, \delta, n_1, n_2, \max(n_1, n_2)) \leq C$ by the choice of C. If $n_1 + n_2 \leq l + 1$ then we can replace the two tuples Y_1' and Y_2' in M' by a conjugate of the tuple $Y = (y_1, \ldots, y_{n_1+n_2})$. This produces a new partitioned tuple

$$M'' = (yYg^{-1}, Y_2', \ldots, Y_n', H')$$

whose underlying tuple is Nielsen-equivalent to H_0. Since $n_1, n_2 \leq n_1 + n_2 - 1$ and by definition of $R(i)$

$$c_4(G, S, \delta, n_1, n_2, R(n_1 + n_2 - 1)) \leq R(n_1 + n_2),$$

it follows that the partitioned tuple M'' is good. This however contradicts the minimality of the complexity assumption since the new partitioned tuple M'' clearly has smaller complexity than M'.

Suppose now that case (2) of Theorem 2.4 applies to N'. After re-labeling and possible conjugation of N' we may assume that we have $d(X_1, h_i^1X_1) \leq \delta K(k)$ where $Y_1' = (y_1, \ldots, y_{n_1})$ and $|y_i| \leq R(n_1)$ for $i = 1, \ldots, n_1$. Recall that $R(n_1) \geq \delta K(k)$.

Thus by Lemma 10.7 the (n_1+1)-tuple $(y_1, \ldots, y_{n_1}, h_1^1)$ is Nielsen-equivalent to a tuple (y_1, \ldots, y_{n_1+1}) with $|y_i| \leq c_5(G, S, \delta, n_1, R(n_1))$ for $i = 1, \ldots, n_1+1$. We construct a new partitioned tuple M'' from M' by replacing H' with the $(m-1)$-tuple (h_2, \ldots, h_m) in M' replacing Y_2' by (y_1, \ldots, y_{n_1+1}). If $n_1 = l$ this implies the assertion of Theorem 10.8 since $c_5(G, S, \delta, n_1, R(n_1)) \leq C$ by the definition of C. If $n_1 < l$, it follows that the new partitioned tuple M'' is good since $c_5(G, S, \delta, n_1, R(n_1)) \leq R(n_1 + 1)$. Since the new partitioned tuple M'' has smaller complexity than M', this yields a contradiction as before.

Suppose now that case (3) of Theorem 2.4 applies for N'. After re-labeling the elements of H' we have $h_1 = ghi^{-1}$ with $|h| \leq \delta K(k)$. Note that $h \neq 1$ by our assumption on H_0.

In this case we construct a new partitioned tuple by removing h from H' and adding the tuple $Y_{n+1} = (h') = (ghi^{-1})$. The underlying set of the new partitioned tuple M'' is clearly Nielsen-equivalent to the original set H_0. Moreover, M'' is good since h' is conjugate to an element of length at most $\delta K(k) = R(1)$. This again contradicts the minimality assumption on the complexity of the partitioned tuple M'.

This completes the proof of Theorem 10.8.

\begin{remark}(A note on computability). Note that by the result of P. Papasoglu [33], given a finite presentation $G = \langle S | R \rangle$ of a word-hyperbolic group, one can effectively find some integer $\delta > 0$ such that the Cayley graph $\Gamma(G, S)$ is δ-hyperbolic.

We observe that the constant $C = C(G, S, \delta, k, l)$ from Theorem 10.8 is effectively computable. Indeed, a careful analysis of the proof of Theorem 2.4 shows that $K = K(k)$ is a recursive function of k.

There are two points in the proof of Theorem 10.8 where computability of constants is not obvious.

First, the computability of the constant $c(n, \delta)$ in Lemma 4.10 depends on Lemma 4.8 and the existence of a uniform non-zero lower bound for the asymptotic translation lengths for non-torsion elements in a δ-hyperbolic group $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$. It is well-known that non-torsion elements in hyperbolic groups have positive asymptotic translation lengths. Moreover, for a fixed finite presentation of a hyperbolic group these lengths are rational numbers with bounded denominators. As follows from the
Obviously, cases (1) and (2) are not applicable, and hence case (3) occurs. Thus for some $1 \leq i \leq k$ and some $x \in X$ we have $d(x, fx) \leq K(k)\delta$, where $K(k)$ is the constant provided by Theorem 2.4. Therefore by the definition of the word-metric on X there is $g \in G$ such that $|g^{-1}fxg| \leq K(k)\delta$. Hence the conclusion of Theorem 10.8 holds for $l = 0$ with $C = C(G, S, \delta, k, 0) = K(k)\delta$.

Suppose now that $l > 0$ and that Theorem 10.8 has been established for all $l' < l$.

Let $K(k)$ be the constant from Theorem 2.4. We define $R(i) = R(G, S, \delta, k, i)$ inductively for $1 \leq i \leq l$. First put $R(1) := \delta K(k)$. Then define $R(i) = R(G, S, k, i)$ for $1 < i \leq l$ as

$$R(i) = \max\left(R(i-1), c_5(G, S, \delta, i-1, R(i-1)), \max_{p, j \geq 1} c_4(G, S, \delta, p, j, R(i-1)) \right).$$

Note that $\delta K(k) = R(1) \leq R(2) \leq \cdots \leq R(l)$ by construction.

We say that a partitioned tuple $M = (Y_1, \ldots, Y_n; H)$ with $n \geq 0$ and $Y_i = (y_{i,1}, \ldots, y_{i,n_i})$ for $1 \leq i \leq n$ is good if

1. $n_i \leq l$ for $1 \leq i \leq n$.
2. For every $i \in \{1, \ldots, n\}$ there exists a $g_i \in G$ such that $|g_i y_{i,j} g_i^{-1}| \leq R(n_i)$ for $1 \leq j \leq n_i$.
3. $U_i = \langle Y_i \rangle \neq 1$ for $1 \leq i \leq n$.

Denote $\mathbb{N} := \{0, 1, 2, 3, \ldots\}$, the set of non-negative integers.

We define the complexity of a partitioned tuple $M = (Y_1, \ldots, Y_n; H)$ with $H = (h_1, \ldots, h_m)$ to be the pair $(m, n) \in \mathbb{N}^2$. We define an order on \mathbb{N}^2 by setting $(m, n) \leq (m', n')$ if $m < m'$ or if $m = m'$ and $n \leq n'$. This clearly gives a well-ordering on \mathbb{N}^2.

Note that for any tuple $(g_1, \ldots, g_k) \in G^k$ there exists a good partitioned tuple M with the underlying tuple Nielsen-equivalent to that has (g_1, \ldots, g_k) as the underlying tuple, namely, $M = (\cdot; H)$, where $H = (g_1, \ldots, g_k)$.

We now show that the conclusion of Theorem 10.8 hold for

$$C = C(G, S, \delta, k, l) := \max\left(c_5(G, S, \delta, l, R(l)), \max_{1 \leq i \leq j \leq l} c_4(G, S, \delta, p, j, R(l-1)), C(G, S, \delta, k, l-1) \right).$$

Let $H_0 = (g_1, \ldots, g_k)$ be a tuple generating a non-elementary freely indecomposable subgroup U of G, where $k \geq l + 1$, $l \geq 0$. Recall that by assumption G is almost torsion-free and that all l-generated subgroups of G are quasiconvex in G. If (g_1, \ldots, g_k) is Nielsen-equivalent to a tuple of the form $(g'_1, \ldots, g'_{k-l+1})$ then the statement of Theorem 10.8 holds for H_0 by the inductive hypothesis applied to the tuple $(g'_1, \ldots, g'_{k-l+1})$. Thus we may assume that no tuple Nielsen-equivalent to H_0 contains an entry equal to 1. In particular, this means that for any tuple Nielsen-equivalent to H_0 the entries of this tuple are pairwise distinct and non-trivial.

Note that the partitioned tuple $M_0 = (\cdot; H_0)$ is good. Choose a partitioned good tuple $M = (Y_1, \ldots, Y_n; H)$ with $H = (h_1, \ldots, h_m)$ of minimal complexity such that the underlying tuple of M is Nielsen-equivalent to $H_0 = (g_1, \ldots, g_k)$. We will show that there exists another partitioned tuple $M = (\tilde{Y}_1, \ldots, \tilde{Y}_n; H)$ such that the underlying tuple is Nielsen equivalent to H_0 and that $\tilde{Y}_1 = (\tilde{y}_1, \ldots, \tilde{y}_l)$ is a \tilde{l}-tuple with $\tilde{l} \geq l + 1$ and $|\tilde{y}_1| \leq C(G, S, k, l)$ for $1 \leq i \leq \tilde{l}$. This clearly proves Theorem 10.8.

Denote $U_j := \langle Y_j \rangle$ for $1 \leq j \leq n$. The subgroups U_j are non-trivial for $j \geq 1$ since we assume that the partitioned tuple M is good.

Since U is freely indecomposable, by Theorem 2.4 we can find a G-tuple $N' = (U'_1, \ldots, U'_n; H')$ with $H' = (h'_1, \ldots, h'_{m'})$ equivalent to the G-tuple $N = (U_1, \ldots, U_n; H)$ and such that one of the three cases from Theorem 2.4 applies to N'. By definition of equivalence of G-tuples each U'_j is conjugate to U_j. Therefore U'_j is generated by a tuple Y'_j where Y'_j has the form

$$Y'_j = b_j Y_j b_j^{-1}$$
and hence
\[d(1, g') \leq d(1, x'_1) + d(x'_1, g' x'_2) + d(g' x'_2, g') \leq c_3 + K + c_4 = 2c_3 + K. \]
It follows that
\[|g' y'_i (g')^{-1}| \leq 4c_3 + 3K. \]
It remains to show that the tuple \(M_1 = (y_1, \ldots, y_n, g y'_1 g^{-1}, \ldots, g y'_n g^{-1}) \) after conjugation is Nielsen equivalent to the tuple \((y_1, \ldots, y_n, g y'_1 (g')^{-1}, \ldots, g y'_n (g')^{-1}) \). This would imply that the statement of the lemma follows with \(c_4 = 4c_3 + 3K \).

Since \(g u_2 g^{-1} \in \langle g y'_1 g^{-1}, \ldots, g y'_n g^{-1} \rangle \) and since \((g u_2 g^{-1})(g y'_i g^{-1}) = g u_2 y'_i u_2^{-1} g^{-1} \) it follows that \(M_1 \) Nielsen equivalent to the tuple \(M_2 = (y_1, \ldots, y_n, g u_2 y'_1 u_2^{-1} g^{-1}, \ldots, g u_2 y'_n u_2^{-1} g^{-1}) \). Moreover, \(u_1 \in \langle y_1, \ldots, y_n \rangle \) implies that \(M_2 \) is Nielsen equivalent to the tuple
\[M_3 = (y_1, \ldots, y_n, u_1^{-1} g u_2 y'_1 u_2^{-1} g^{-1} u_1, \ldots, u_1^{-1} g u_2 y'_n u_2^{-1} g^{-1} u_1). \]
Since \(g' = u_1^{-1} g u_2 \) the conclusion follows.

Lemma 10.7. Let \(G = \langle S | R \rangle \) be an almost torsion-free word-hyperbolic group. Then for any integers \(K \geq 0 \) and \(n \geq 1 \) there exists a constant \(c_5 = c_5(G, S, \delta, n, K) \) with the following property:

Let \(U = \langle Y \rangle \) where \(Y = (y_1, \ldots, y_n) \in G^n \) and \(|y_i| \leq K \) for \(1 \leq i \leq n \). Suppose that \(U \) is quasiconvex in \(G \) and that \(d(X(U), gX(U)) \leq K \).

Then the tuple \((y_1, \ldots, y_n, g)\) is Nielsen-equivalent to a tuple \((y_1, \ldots, y_n, y_{n+1})\) such that \(|y_i| \leq c_5\) for \(1 \leq i \leq n+1 \).

Proof. Choose \(c_5 = c_5(G, S, \delta, n, K) \) as provided by Lemma 10.5. Hence \(U \) and \(X(U) \) are \(c_5 \)-Hausdorff-close. Since \(d(X(U), gX(U)) \leq K \) there exist points \(x_1, x_2 \in X(U) \) such that \(d(x_1, g x_2) \leq K \). Since \(U \) and \(X(U) \) are \(c_5 \)-Hausdorff close there exist \(u_1, u_2 \in U \) such that \(d(x_1, u_1) \leq c_5 \) and that \(d(x_2, u_2) \leq c_5 \).

Put \(y_1 = u_1^{-1} g u_2 \), \(x'_1 = u_1^{-1} x_1 \) and \(x'_2 = u_2^{-1} x_2 \). Since \(X(U) \) is \(U \)-invariant, \(x'_1, x'_2 \in X(U) \). Also, \(d(x_i, u_i) \leq c_5 \) implies that \(d(1, x'_i) \leq c_3 \) for \(i = 1, 2 \).

Moreover,
\[d(x'_1, y_n x'_2) = d(u_1^{-1} x_1, (u_1^{-1} g u_2) u_2^{-1} x_2) = d(u_1^{-1} x_1, u_1^{-1} g x_2) = d(x_1, g x_2) \leq K. \]
By the triangle inequality we have
\[|y_i| = d(1, y_n) \leq d(1, x'_1) + d(x'_1, y_n x'_2) + d(y_n x'_2, y_n) \leq 2c_5 + K. \]
The tuple \((y_1, \ldots, y_n)\) is obviously Nielsen-equivalent to \((y_1, \ldots, y_{n-1}, g)\). Hence the statement of Lemma 10.7 holds with \(c_5 = 2c_3 + K \).

We now have all tools for the proof of the main result of this section, which coincides with Theorem 1.3 from the introduction.

Theorem 10.8. Let \(G = \langle S | R \rangle \) be an almost torsion-free \(\delta \)-hyperbolic group, where \(\delta > 0 \). Suppose \(l \geq 0 \) is an integer such that all \(l \)-generated subgroups of \(G \) are quasiconvex in \(G \) and let \(k \geq l + 1 \) be any integer. Then there is a constant \(C = C(G, S, \delta, k, l) > 0 \) with the following property.

Suppose \(U \) is a non-elementary freely indecomposable subgroup of \(G \) generated by the elements \(g_1, \ldots, g_k \). Then there exist an element \(g \in G \) and a tuple \((f_1, \ldots, f_k)\) Nielsen-equivalent to \((g, \ldots, g)\) such that \(|g^{-1} f g| \leq C \) for \(1 \leq i \leq l + 1 \).

Proof. Denote \(X = \Gamma(G, S) \), so that \((X, d)\) is \(\delta \)-hyperbolic. We will prove Theorem 10.8 by induction on \(l \). Suppose first \(l = 0 \). (Note that the only 0-generated subgroup of \(G \) is the trivial subgroup which is always quasiconvex). Suppose \(U = \langle g_1, \ldots, g_k \rangle \leq G \) is non-elementary and freely indecomposable. Put \(H = \langle g_1, \ldots, g_k \rangle \) and consider the \(G \)-tuple \(M = (H, H) \). Then by Theorem 2.4 \(M \) is equivalent to \(\tilde{M} = (\tilde{H}, \tilde{H}) \), where \(\tilde{H} = (f_1, \ldots, f_k) \), such that one of the cases (1), (2),(3) of Theorem 2.4 applies to \(\tilde{M} \).
for some \(y \in [u, u_2] \) we have \(d(y, t) \leq 2\delta \). Since \(U \) is \(\epsilon \)-quasiconvex, there is \(u \in U \) with \(d(y, u) \leq \epsilon \). Hence \(d(t, u) \leq 2\delta + 2\epsilon \) and \(d(t', u) \leq c + 2\delta + 2\epsilon \). Since \(t' \in X(U) \) was chosen arbitrarily, this implies that \(X(U) \) is contained in the \((c + 2\delta + 2\epsilon)\)-neighborhood of \(U \).

Since we already know that \(U \) is contained in the \((3\epsilon + 100\delta)\)-neighborhood of \(X(U) \), the sets \(U \) and \(X(U) \) are \((c + 100\delta + 3\epsilon)\)-close, that is the claim holds for \(c_1 = c + 100\delta + 3\epsilon \).

Lemma 10.4. For any \(C \geq 0 \) there is a constant \(c_2 = c_2(G, S, \delta, C) \) such that for any non-trivial finite subgroup \(U \leq G \) contained in the \(C\)-ball around 1 in \(\Gamma(G, S) \) the sets \(U \) and \(X(U) \) are \(c_2\)-Hausdorff close (where \(X(U) \) is defined relative \(\delta \)).

Proof. Choose \(\delta \) such that \(G = \langle S | R \rangle \) is \(\delta \)-hyperbolic. Note first that since \(G \) is a word-hyperbolic group, it has only finitely many conjugacy classes of subgroups of finite order. By a theorem of V. Gerassimov and O. Bogopol'skii [13] any subgroup of finite order in \(G \) is conjugate to a subgroup contained in the ball of radius \(2\delta + 1 \) around 1 \(\in G \) in the Cayley graph \(\Gamma(G, S) \). Let \(U \leq G \) be a non-trivial finite subgroup of \(G \) such that \(|u|_S \leq 2\delta + 1 \) for any \(u \in U \). Let \(g \in G \) be such that for some \(u \in U \), \(u \neq 1 \) we have \(d(g, u) \leq 100\delta \). Since the number of such subgroups is finite, and for each such subgroup the diameter of \(X(U) \) is finite by Lemma 4.11, there is a constant \(c' = c'(G, \delta, S) \) such that \(U \) and \(X(U) \) are \(c'\)-close.

Suppose now \(U \) is an arbitrary finite subgroup of \(G \) contained in the ball of radius \(C \) around 1. Then \(U = hVh^{-1} \) for some \(h \in G \) and some finite subgroup \(V \) of \(G \) contained in the ball of radius \(2\delta + 1 \) and with \(|h|_S \leq K \), where \(K = K(C, \delta, G, S) \) is some constant. Then \(X(U) = hX(V) \). Hence \(X(U) \) is contained in the ball of radius \(K + c' \) around 1. Also \(U \) is contained in the ball of radius \(2K + 4\delta + 2 \). Therefore \(U \) and \(X(U) \) are \(c_2\)-Hausdorff close, where \(c_2 = 2K + 4\delta + 2 + 2c' \).

Lemma 10.5. For any integers \(C \geq 0 \) and \(n \geq 1 \) there is a constant \(c_3 = c_3(G, S, \delta, n, C) \) with the following property. Suppose \(U \leq G \) is a non-trivial quasiconvex subgroup \(U \leq G \) generated by a set \(Y \) with at most \(n \) elements such that \(Y \) is contained in the \(C\)-ball around 1 in \(\Gamma(G, S) \). Then the sets \(U \) and \(X(U) \) are \(c_3\)-Hausdorff close.

Proof. Let \(E_n \) be the maximum of quasiconvexity constants of infinite quasiconvex subgroups generated by subsets with at most \(n \) elements from the \(C\)-ball around 1 in \(\Gamma(G, S) \). Put \(c_3 := c_1(G, S, \delta, E_n) + c_2(G, \delta, S, C) \). The statement of Lemma 10.5 now follows directly from Lemma 10.3 and Lemma 10.4.

We establish two lemmas that correspond to two different cases in the inductive step of the proof of Theorem 1.3.

Lemma 10.6. For any integers \(K \geq 0 \) and \(n_1, n_2 \geq 1 \) there exists a constant \(c_4 = c_4(G, S, \delta, n_1, n_2, K) \) with the following property:

Suppose \(U_1 = \langle Y_1 \rangle \) and \(U_2 = \langle Y_2 g^{-1} \rangle \) are two quasiconvex subgroups of \(G \), where \(g \in G \), \(Y_1 = (y_1, \ldots, y_{n_1}) \in G^{n_1} \), \(Y_2 = (y'_1, \ldots, y'_{n_2}) \in G^{n_2} \), \(|y_i| \leq K \) for \(1 \leq i \leq n_1 \) and \(|y'_i| \leq K \) for \(1 \leq i \leq n_2 \). Suppose that \(d(X(U_1), X(U_2)) \leq K \).

Then the \((n_1 + n_2)\)-tuple \((y_1, \ldots, y_{n_1}, y'_1 g^{-1}, \ldots, y'_{n_2} g^{-1})\) is Nielsen-equivalent to a tuple conjugate in \(G \) to \((y_1, \ldots, y_{n_1+n_2})\) where \(|y_i| \leq c_4 \) for \(1 \leq i \leq n_1 + n_2 \).

Proof. Note that \(X(U_1) = gX(U_2) \) where \(\tilde{U}_2 = \langle Y_2 \rangle \). Put \(n = \max(n_1, n_2) \) and choose \(c_3 = c_3(G, S, \delta, n, K) \) to be the constant provided by Lemma 10.5. Thus \(U_1 \) and \(X(U_1) \) are \(c_3\)-Hausdorff close and \(\tilde{U}_2 \) and \(X(\tilde{U}_2) \) are \(c_3\)-Hausdorff close. Since \(d(X(U_1), X(\tilde{U}_2)) \leq K \) and \(X(U_2) = gX(U_1) \), there exist \(x_1 \in X(U_1) \) and \(x_2 \in X(\tilde{U}_2) \) such that \(d(x_1, gx_2) \leq K \). Since \(\bar{U}_1 \) and \(X(U_1) \) are \(c_3\)-Hausdorff close there exist \(u_1 \in \bar{U}_1 \) such that \(d(u_1, x_1) \leq c_3 \). Analogously we find an \(u_2 \in \tilde{U}_2 \) such that \(d(u_2, x_2) \leq c_3 \).

Put \(x'_i = u^{-1}_1 x_i \) and \(g' = u^{-1}_1 g u_2 \), so that \(d(1, x'_i) \leq c_3 \). Note that \(x_1 \in X(U_1) \) since \(X(U_1) \) is \(U_1\)-invariant and that \(x'_2 \in X(\tilde{U}_2) \) since \(X(\tilde{U}_2) \) is \(\tilde{U}_2\)-invariant. Also

\[
d(x'_1, g' x'_2) = d(u^{-1}_1 x_1, (u^{-1}_1 g u_2) u^{-1}_1 x_2) = d(u^{-1}_1 x_1, u^{-1}_1 g x_2) = d(x_1, g x_2) \leq K
\]
10. APPLICATIONS TO HYPERBOLIC GROUPS

If G is a group and $Z = (g_1, \ldots, g_n)$ is an n-tuple of elements of G, we will call n the length of Z and denote $n = L(Z)$. We shall also say that the empty tuple () has zero length.

Convention 10.1 (Partitioned tuple). Let G be a group. If Y is an n-tuple of elements of G we will say that n is the length of Y. We will say that $M = (Y_1, \ldots, Y_p; H)$ is a partitioned tuple in G if $p \geq 0$ and Y_1, \ldots, Y_p, H are finite tuples of elements of G such that at least one of these tuples has positive length and such that for any $i \geq 1$ the tuple Y_i has positive length. We will call the sum of the lengths of $L(Y_1) + \cdots + L(Y_p) + L(H)$ the length of M and denote it by $L(M)$.

We will now apply Theorem 2.4 to almost torsion-free word-hyperbolic groups. First we observe that for an almost torsion-free word-hyperbolic group $G = \langle S | R \rangle$ acting on its Cayley graph $X = \Gamma(G, S)$ the set $X(U)$ is in fact close to U for a quasiconvex subgroup U.

We will say that the group $G = \langle S | R \rangle$ is δ-hyperbolic if the Cayley-graph $\Gamma(G, S)$ is δ-hyperbolic. The constant δ only depends on G and S and can in fact be computed using the algorithm of P.Papaoglu [33]. The generating set S will always be finite. We denote the metric in the Cayley graph by d_S and define $|g|_S = d_S(1, g)$. Often we simply use d instead of d_S and $|g|$ instead of $|g|_S$.

Convention 10.2. Till the end of this section, unless specified otherwise, we shall assume that $G = \langle S | R \rangle$ be a almost torsion-free δ-hyperbolic group, where $\delta > 0$. We will also denote $X = \Gamma(G, S)$ to be the Cayley graph of G.

Lemma 10.3. There exists a constant $c_1 = c_1(G, S, \delta, \epsilon) > 0$ such that the following holds:

Let U be an ϵ-quasiconvex infinite subgroup of G, where $\epsilon > 0$ is an integer. Then U and $X(U)$ are c_1-Hausdorff close (where $X(U)$ is defined relative δ).

Proof. Note first that U has a non-trivial element $u_0 \in U$, $u_0 \neq 1$ such that $d(1, u_0) \leq 3\epsilon$. Indeed, since U is infinite, there is $u' \in U$ such that $d(1, u') > 3\epsilon$. Consider a geodesic $[1, u']$ and let $x \in [1, u']$ be such that $d(1, x) = 2\epsilon$. Since U is ϵ-quasiconvex in $\Gamma(G, S)$, there is $u_0 \in U$ with $d(x, u) \leq \epsilon$. Then by the triangle inequality

$$0 < \epsilon \leq d(1, u_0) \leq 3\epsilon$$

Thus $u_0 \neq 1$, $u_0 \in U$ and $d(1, u_0) \leq 3\epsilon$, as required.

Recall that the set $X(U)$ is 4δ-quasiconvex. Let $p \in X(U)$ be such that $d(1, p) = d(1, X(U))$. Then by Lemma 4.4 the path $[1, p] \cup [p, u_0] \cup [u_0, 1]$ is $(1, 100\delta)$-quasigeodesic. Since $d(1, u_0) \leq 3\epsilon$, we conclude that $d(1, p) \leq 3\epsilon + 100\delta$.

Then for any $u \in U$ we have $u p \in X(U)$ and $d(u, u p) = d(1, p) \leq 3\epsilon + 100\delta$. Therefore U is contained in the $(3\epsilon + 100\delta)$-neighborhood of $X(U)$.

Let $t' \in X(U)$. By Lemma 4.10 the sets $X(U)$ and X_U are c-close and hence there is $t \in X_U$ such that $d(t, t') \leq c$. Here $c = c(#S, \delta)$ is the constant provided by Lemma 4.10.

Then t lies on a bi-infinite geodesic $[a, b]$ for some $a, b \in AU \subseteq \partial G$. Thus both a and b are approximated by elements of the U-orbit of an arbitrary point of $\Gamma(G, S)$, for example the U-orbit of 1. Therefore a and b are approximated by elements of U. Recall that $t \in [a, b]$. Hence there exist $u_1, u_2 \in U$ such that
and that $d(X_i, X_j) \geq \delta C(k)$ for $i \neq j$ and that
\[A := \bigcup_{u \in U} u(\Omega \cup X_1 \cup \cdots \cup X_n) \]
is $C(k)$-close to $X(V)$.

We claim that the G-tuple $(V; H)$ is minimal. Indeed, suppose not. Then there is a pair $(V'; H')$ equivalent to $(V; H)$ such that $|H'|_{V'} < |H|_{V} + 1$. The definition of equivalence implies that there is a G-tuple $M' = (U_1', \ldots, U_n', H')$ equivalent to M such that for some $g \in G$ we have $V' = \langle U_1' \cup \cdots \cup U_n' \rangle$ and $U_i' = gU_i g^{-1}$, $V' = gV g^{-1}$. Thus $X(U_i') = gX(U_i)$ and therefore $d(X(U_1), \ldots, X(U_n')) = d(X(U_1), \ldots, X(U_n))$. This means that the G-tuple M' is also weakly minimal. But $|H'|_{V'} < |H|_{V} + 1$, which contradicts the minimality of M.

Thus $(V; H)$ is a minimal G-tuple. Therefore by Proposition 7.2 either $U = V = F(H) = U_1 \cdots U_n$ or $F(H)$ or $(V; H)$ is equivalent to $(V'; H')$ such that one of the two cases of Proposition 7.2 applies to $(V'; H')$. Once again, the definitions of equivalence imply that there is $g \in G$ such $V' = gV g^{-1}$ and that for $U_i' = gU_i g$ the G-tuples M and $M' = (U_1', \ldots, U_n', H')$ are equivalent. Again, we see that $d(X(U_1), \ldots, X(U_n)) = d(X(U_1'), \ldots, X(U_n'))$, so M' is weakly minimal. We will assume that $g = 1$ and it will be clear from the proof that the same argument applies in general. Thus $U_i = U_i$ and $V' = V$ (but H and H' are not necessarily the same).

Suppose first that case (b) of Proposition 7.2 applies to $(V'; H') = (V; H')$. Then there is $h \in H'$ and $x \in X$ with $d(x, hx) \leq R(k)$ and the conclusion of Theorem 2.4 obviously holds. Suppose now that case (a) of Proposition 7.2 applies to $(V; H')$. Thus there are $x_1, x_2 \in X(V)$ and $h \in H'$ such that $d(x_1, x_2) \leq R(k)$. Since A and $X(V)$ are $C(k)$-close, there are points $x, y \in B := \Omega \cup X_1 \cup \cdots \cup X_n$ and $v_1, v_2 \in V$ such that $d(v_1 x, hv_2 y) \leq 2C(k) + R(k)$. Replacing $h \in H'$ by $v_1^{-1} hv_2$ (which preserves the equivalence classes of both M and $(V; H')$ and the weak minimality of M') we may further assume that $v_1 = v_2 = 1$. Thus there are $x, y \in B$ such that $d(x, hy) \leq 2C(k) + R(k)$.

Denote $L = (2C(k) + R(k) + 2)k$. If both x, y are in the L-neighborhood of $X_1 \cup \cdots \cup X_n$ then there are points $x' \in X_1$ and $y' \in X_j$ with $1 \leq i \neq j \leq n$ and $d(x', y') \leq 2L + 2C(k) + R(k) = K(k)$. If $i = j$ then conclusion (2) of Theorem 2.4 holds. If $i \neq j$ the conclusion (1) of Theorem 2.4 holds after replacing U_i by $hU_i h^{-1}$ and therefore $X(U_i)$ by $hX(U_i)$. Thus we may assume that $x \in \Omega$ and that $d(x, X_i) > L$ for all $i = 1, \ldots, n$. Recall that $y \in B$ and $d(x, hy) \leq 2C(k) + R(k)$ for some $h \in H'$.

Consider the Ω-geodesic $[x, y]_{\Omega}$. Let $z \in [x, y]_{\Omega}$ be such that $d_{\Omega}(x, z) = L$. Thus $z \in \Omega$ and moreover, z and x belong to the same tree-component T of Ω. Since $n \leq k$, the forest Ω has at most $k - 2$ branching points. Hence there is a subsegment $[x', z']_{\Omega} \subseteq [x, z]_{\Omega}$ such that $d_{\Omega}(x', z') = L/k = 2C(k) + R(k) + 2$ and the segment $[x', z']_{\Omega}$ contains no branching points of Ω.

Removing z' from B disconnects B into two connected components: component $B_{x'}$ containing x' and component B_y containing y. Denote $D_{x'} := (B_{x'} \cap \Omega) - [x', z']_{\Omega}$ and $D(y) := B_y \cap \Omega$.

Put $\Omega'' := \Omega_{x'} \cup h^{-1}D_y \cup [x', h^{-1}y]$. Then
\[P(\Omega'') \leq P(\Omega) - (2C(k) + R(k) + 2) + 2C(k) + R(k) < P(\Omega) - 1, \]
which contradicts the minimality of M. This completes the proof of Theorem 2.4.

Remark 9.2. The assumption in Theorem 2.4 that (X, d) be a strongly geodesic space can be replaced by requiring (X, d) to be geodesic. We imposed the “strongly geodesic” assumption in order to talk about
9. Final deduction

In this section we finish the proof of Theorem 2.4. We generalize the definition of minimality to G-tuples with non-trivial hyperbolic set.

Definition 9.1 (Minimal G-tuples). Let (X, d) be a 1-hyperbolic strongly geodesic G-space.

Let $M = (U_1, \ldots, U_n; H)$ be a G-tuple, where $n \geq 1$, $m \geq 0$, $H = (h_1, \ldots, h_m) \in G^m$ and U_i are non-trivial subgroups of G.

1. We say that M is weakly minimal if

$$d(X(U_1), \ldots, X(U_n)) \leq d(X(U'_1), \ldots, X(U'_n)) + 1.$$

for any G-tuple $M' = (U'_1, U'_2, \ldots, U'_n; H')$ which is equivalent to M.

2. We say that M is minimal if M is weakly minimal and if

$$|H|_V \leq |H'|_{V'} + 1$$

for any weakly minimal G-tuple $M' = (U_1, U_2, \ldots, U_n; H)$ which is equivalent to M. Here $V = \langle U_1 \cup \cdots \cup U_n \rangle$ and $V' = \langle U'_1 \cup \cdots \cup U'_n \rangle$.

Note that this notion of minimality coincides with the definition given in Section 6 if $m = 0$ and $n \geq 1$ and with the definition given in Section 7 if $n = 1$. Although for the purposes of this paper it is not necessary to define minimality for the case $n = 0, m \geq 1$, this case was handled in [30]. Once again, since $\delta > 0$, minimal elements exist in every equivalence class.

We can now prove the proof of our main technical result.

Proof of Theorem 2.4. It suffices to prove Theorem 2.4 for $\delta = 1$ since if (X, d) is δ-hyperbolic (with $\delta > 0$), then the space $(X, d/\delta)$ is 1-hyperbolic. Thus we will assume that (X, d) is a 1-hyperbolic strongly geodesic G-space.

Let $C(k)$ be the constant from Proposition 6.3 and let $R(k)$ be the constant provided by Proposition 7.2. Let $C^1(k)$ be the constant provided by Theorem 1 in [30]. Put $K(k) := 2k(2C(k) + R(k) + 2) + 2C(k) + R(k) + C^1(k)$.

If $n = 0$ and $M = (\cdot; H)$, the statement of Theorem 2.4 follows from the main result of [30]. If $m = 0$ and $H = (\cdot)$ then the statement of Theorem 2.4 follows from Proposition 6.3. If $n = 1$ the statement of Theorem 2.4 follows from Proposition 7.2.

Therefore we will assume that $m \geq 1$ and $n \geq 2$.

Suppose that $M = (U_1, \ldots, U_n; H)$ is a minimal G-tuple, where $n \geq 2$, $H = (h_1, \ldots, h_m) \in G^m$, $m \geq 1$ and $m + n \leq k$. Recall that by the definition of G-tuple U_i are non-trivial subgroups of G.

Denote $X_i = X(U_i)$ and let $\Omega = \Omega(X_1, \ldots, X_n)$ be a minimal connector. Put $V = \langle U_1 \cup \cdots \cup U_n \rangle \leq G$.

By Proposition 6.3 we may assume that
We define the **stable part relative** \(N \), denoted \(S_v \), for a product \(v = h_m^n g \) relative \(N \) by considering \(v \) as the inverse of the product \(w = v^{-1} = h_m^{-n} g^{-1} \). Since \(S_v = [s, t] \) lies in the 2-neighborhood of \([x, wz]\) for some geodesic \([x, wz]\), it follows that \(w^{-1}[s, t] \) lies in 2-neighborhood of \([w^{-1}z, x] = [xz, x] \) for some geodesic segment \([xz, x] \). We define \(S_v := w^{-1}[t, s] \), where \([t, s] \) is the geodesic segment \([s, t] \) traveled from \(t \) to \(s \).

Informally speaking, the stable part now represents part of the segment corresponding to a product of length 2 that survives as a subsegment in longer products. The same argument as in [30] gives us the following local stability result.

Lemma 8.7. Let \(N \geq N_1 \). There exists a constant \(k = k(N, m) \) with the following property: Suppose that \(H = (h_1, \ldots, h_m) \) is as in Proposition 8.2 and that \(l_V(h_m) \geq 4N + 2d_2(m-1) + 2d_4(m-1, d_2(m-1) + 20) + 100 \). Then either the first conclusion of Proposition 8.2 holds or for any \(g, g_1, g_2 \in \langle h_1, \ldots, h_{m-1} \rangle \) and \(\eta, \eta_1, \eta_2 \in \{-1, 1\} \) the following hold:

1. We can write \(E_{\eta_1 \eta_2 h_m} = [x_1, p] \cup [p, x_2] \) so that the 20-neighborhood of \([x_1, p] \)
 contains \(S_{\eta_1 h_m} \) and the 20-neighborhood of \([p, x_2] \)
 contains \(g_1 S_{\eta_2 h_m} \).
2. We can write \(E_{h_m \eta_1 \eta_2} = [x_1, p] \cup [p, x_2] \) so that the 20-neighborhood of \([x_1, p] \)
 contains \(S_{h_m \eta_1} \) and the 20-neighborhood of \([p, x_2] \)
 contains \(h_m S g_{\eta_2} \).

We now define a path \(\sigma_N(w) \) which is a quasigeodesic close to \(S_v \), where \(W \) is a product of type

\[
w = g_1 h_m^n g_2 h_m^{n_2} \cdots h_m^{n_l} g_1 h_m^n g_{l+1}
\]

with \(\eta \in \{-1, 1\} \) for \(1 \leq i \leq l \), \(g_i \in \langle h_1, \ldots, h_{m-1} \rangle \) for \(1 \leq i \leq l+1 \) and \(g_i \neq 1 \) if \(\eta = -\eta_{i+1} \) for \(2 \leq i \leq l \).

First define \(w_i = g_i h_m^n \) and \(v_i = h_m^n g_{i+1} \) for \(1 \leq i \leq l \) and choose \(s_i, t_i, s'_i \) and \(t'_i \) such that \(S_v = [s_i, t_i] \) and \(S_v = [s'_i, t'_i] \). Furthermore, denote \(S_i := w_i \cdots w_{i-l} s_i \), \(T_i := w_i \cdots w_{i-l} t_i \), \(S'_i := w_i \cdots w_{i-l} g_{l+1} s'_i \) and \(T'_i := w_i \cdots w_{i-l} g_{l+1} t'_i \).

This implies that \(w_i \cdots w_{i-1} S_v = [S_i, T_i] \) and \(w_i \cdots w_{i-1} g_1 S_v = [S'_i, T'_i] \).

As in [30], we now conclude that the path

\[
\sigma_N(w) = [x, S_1] \cup [S_1, T_1] \cup [T_1, S'_1] \cup [S'_1, T'_1] \cup [T'_1, S_2] \cup [S_2, T_2] \cup \cdots \cup [S_l, T_l] \cup [T_l, w]
\]

is a \(N \)-local \((1, 500)\)-quasigeodesic and therefore \(L \)-Hausdorff close to any geodesic segment \([x, wz]\).

The following simple fact follows immediately from the definition of hyperbolicity:

Lemma 8.8. Let \((X, d) \) be a 1-hyperbolic geodesic space and suppose that \([x, y]\) is a geodesic segment and that \(c = d(z, [x, y]) \). Suppose further that \(d(x, z) \geq 10 + c \). Then the initial segment of \([x, z]\) of length \(d(x, z) - (c + 10) \) lies in the 1-neighborhood of \([x, y]\).

Proof of Proposition 8.2 All conclusions of Proposition 8.2 except (3) follow exactly as in [30]. We therefore only have to verify the third claim of Proposition 8.2.

We will show that part (3) of Proposition 8.2 holds for \(c_4(m) = \max\{d_4(m-1) + d_5(m-1) + d_6(m-1, d_2(m-1) + 20) + L + 31, d_4(m-1) + L + 10\} \).

Let \(u = h_{l_1}^1 \cdots h_{l_k} \in U \) be a freely reduced product. We rewrite \(u \) as the product \(g_1 h_m^n g_2 h_m^{n_2} \cdots h_m^{n_l} g_1 h_m^n g_{l+1} \) by joining all sub-products with factors in \(\{h_1, \ldots, h_{m-1}\}^{\pm 1} \) to element \(g_i \in \langle h_1, \ldots, h_{m-1} \rangle \). We choose the same notations as above for the quasigeodesic \(\sigma_N(u) \). We distinguish the cases that \(g_i \neq 1 \) and that \(g_i = 1 \).

Case 1: \(g_i = 1 \). This means that \(g_1 h_m^n = h_m^n g_1 = h_{l_1}^1 \). In this case the stable part \([S_i, T_i]\) of the product \(g_1 h_m^n g_1 \) is by definition of the stable part a subsegment of \(E_{h_m^n} = E_{h_m^n} \) which lies at most in distance \(d_2(m-1) \) from the midpoint of \(E_{h_m^n} \). It follows that the 1-neighborhood of \([x, S_i] \cup [S_i, T_i]\) contains the initial segment of \(E_{h_m^n} \) of length at least \(\frac{1}{2} l_V(h_m) - d_2(m-1) \). It follows from Lemma 8.8 that the initial segment of \(E_{h_m^n} \) of length at least \(\frac{1}{2} l_V(h_m) - d_2(m-1) - L - 10 \) lies in the 1-neighborhood of \([x, wz]\) since \([x, S_i] \cup [S_i, T_i]\) lies in the 1-neighborhood of \([x, wz]\). This proves the claim since by assumption \(c_4 \geq d_2(m-1) + L + 10 \).
Definition 8.6. [Stable part] Let \(N \geq N_1 \). Suppose that \(w \) is the product \(w = gh_m^\eta \) with \(g \in \langle h_1, \ldots, h_{m-1} \rangle \) and \(\eta \in \{-1, 1\} \) and that \(\nu(h_m) \geq 4N + 2d_2(m-1) + 2d_4(m-1, d_2(m-1) + 20) + 100 \). We assign to \(w \) the stable part \(S_w \) of \(w \) relative \(N \) as follows:

1. If the terminal segment of length \(\frac{1}{2} \nu(h_m) + N + d_2(m-1) \) of \(gE_{h_m^\eta} \) lies in the 2-neighborhood of \(E_{h_m^\eta} \), then we put

\[
S_w := [s, t] \subset gE_{h_m^\eta}
\]

where \([s, t] \subset gE_{h_m^\eta} = [x_1, x_2]\) are chosen such that \(d(x_2, s) = \frac{1}{2} \nu(h_m) + N + d_2(m-1) \) and \(d(x_2, t) = \frac{1}{2} \nu(h_m) + d_2(m-1) \). (In Figure 10 \(m \) is the midpoint of \(gE_{h_m^\eta} = [x_1, x_2] \), \(d(m, t) = d_2(m-1) \) and \(d(s, t) = N \).)

![Figure 10](image1.png)

Figure 10. Stable part: first case.

2. If the terminal segment of length \(\frac{1}{2} \nu(h_m) + N + d_2(m-1) \) of \(gE_{h_m^\eta} \) does not lie in the 2-neighborhood of \(E_{h_m^\eta} \), then we must clearly have a product of Type 1 and we choose the point \(p \) accordingly. We then put

\[
S_w := [s, t] \subset E_g
\]

where \([s, t] \in E_g = [y_1, y_2]\) are chosen such that \(d(s, p) = d_4(m-1, d_2(m-1) + 20) \) and \(d(t, p) = d_4(m-1, d_2(m-1) + 20) + N \) (see Figure 11). The fact that the segment \([s, t]\) exists follows precisely as in [30] from the minimality of and the fact that \(\nu(h_m) \geq 4N + 2d_2(m-1) + 2d_4(m-1, d_2(m-1) + 20) + 100 \).

![Figure 11](image2.png)

Figure 11. Stable part: second case.
As a consequence of Lemma 8.3 we obtain the following two lemmas which correspond to the two parts of Lemma 17 of [30]. They will guarantee that the stable parts defined below always exist.

Lemma 8.4. Suppose that \(g \in G \) with \(L_V(g) \geq 20 \). Let \(N \geq N_1 \). Then either \(d(g, g\gamma) \leq 20 \) for some \(\gamma \in X \) or \(L_V(g) \leq 2N + 2d_2 + 100 \) or we have \(\begin{array}{c} E_{g^2} = [x_1, p] \cup [p, q] \cup [q, x_2] \end{array}\) where \([x_1, p]\) lies in the 10-neighborhood of \(E_g \) and \([q, x_2]\) lies in the 10-neighborhood of \(gE_g \) and \(d(x_1, p) \geq \frac{1}{2}L_V(g) + N + d_2 \) and \(d(q, x_2) \geq \frac{1}{2}L_V(g) + N + d_2 \).

Proof. Suppose that \(L_V(g) > 2N + 2d_2 + 100 \). If the product \(gg \) is of Type 2, we clearly get the last conclusion. Suppose that the last conclusion does not hold. It follows that the product \(gg \) is of Type 1. In this case it is clear that the midpoint \(y \) of \(E_g \) and the midpoint \(y' = gy \) of \(gE_g \) are at distance at most 20 from each other, which gives the first conclusion.

Lemma 8.5. Suppose that \(H = (h_1, \ldots, h_m) \) is minimal, that \(L_V(h_i) \leq L_V(h_m) \) for \(1 \leq i \leq m - 1 \), that \(g \in \langle h_1, \ldots, h_{m-1} \rangle \), that \(\eta \in \{-1, 0, 1\} \) and that the conclusion of Proposition 8.1 holds for \(m - 1 \) with \(d_2 = d_2(m - 1) \). Then we have

\[E_{gh_m^n} = [x_1, p] \cup [p, q] \cup [q, x_2] \]

where

1. \([x_1, p]\) lies in the 10-neighborhood of \(E_g \) and \(d(x_1, p) \geq \frac{1}{2}L_V(g) - 20 \).
2. \([q, x_2]\) lies in the 10-neighborhood of \(gE_{h_m^n} \) and \(d(q, x_2) \geq \frac{1}{2}L_V(h_m) - 20 + d_2 \).

Proof. The existence of the path \(E_{gh_m^n} = [x_1, p] \cup [p, q] \cup [q, x_2] \) such that \([x_1, p]\) lies in the 10-neighborhood of \(E_g \) and that \([q, x_2]\) lies in the 10-neighborhood of \(gE_{h_m^n} \) follows from the discussion of the paths associated to products of length 2; here we set \(p = q \) if the path is of Type 1. Now \(d(x_1, p) \geq \frac{1}{2}L_V(g) - 20 \) since otherwise \(L_V(gh_m^n) < L_V(h_m) - 1 \) which contradicts the minimality of \(H \). The last statement follows precisely as the proof of Lemma 17 (2) of [30] since by assumption (1) of Proposition 8.2 holds for \(m - 1 \). □

The main component of the proof in [30] that has to be mimicked is the definition of the stable part. Note that as in [30] the stable part \(S_w \) of \(w = gh_m^n \) applies to the product \(w = gh_m^n \) and not simply to the element \(w \).
1. For any \(u = h_1^{i_1} \cdots h_k^{i_k} \in U \), the segment \([x, ux]\) lies in the \(d_2\)-neighborhood of \([x, h_1^{i_1}x] \cup h_1^{i_1}[x, h_2^{i_2}x] \cup \cdots \cup h_1^{i_1} \cdots h_k^{i_k-1}[x, h_k^{i_k}x]\).

2. For any freely reduced \(u = h_1^{i_1} \cdots h_k^{i_k} \in U \) we have that \(l_V(u) \geq l_V(h_{i_1}) - c_3 \).

3. For any freely reduced product \(u = h_1^{i_1} \cdots h_k^{i_k} \in U \) the initial segment of the essential part \(E_{h_1^{i_1}} \) of length \(\frac{1}{2}l_V(h_{i_1}) - c_3 \) lies in the 1-neighborhood of \([x, ux]\).

4. For any product of type \(w = g_1 h_1^{\eta_1} g_2 h_2^{\eta_2} \cdots h_m^{\eta_m} g_t h_{t+1} \) with \(\eta_i \in \{-1, 1\} \) for \(1 \leq i \leq t \), \(g_t \in \langle h_1, \ldots, h_{m-1}\rangle \) for \(1 \leq i \leq t+1 \) and \(g_t \neq 1 \) if \(\eta_t = -\eta_{t+1} \) for \(2 \leq i \leq t \) the following holds:
 - The \(2L + 100\)-neighborhood of every subsegment of \([x, wx]\) of length at least \(10T \) contains a subsegment of length at least \(T \) of either a segment of type \(g_1 h_1^{\eta_1} g_2 h_2^{\eta_2} \cdots h_m^{\eta_m} g_t[x, h_m^{\eta_m} x] \) or \(g_1 h_1^{\eta_1} g_2 h_2^{\eta_2} \cdots h_m^{\eta_m-1}[x, g_t x] \) for some \(i \).

The proof of Proposition 8.2 is identical to the proof of Proposition 11 of [30]. Namely, we need to study cancellations (relative \(V \)) in products of type \(gh \) and \(gfh \), where \(g, h, f \in G \). We also need to define stable parts of products of type \(h_m^\eta g \) and \(gh_m^\eta \) where \(g \in \langle h_1, \ldots, h_{m-1}\rangle \) and \(\eta \in \{-1, 1\} \).

We first study cancellation in products of length two.

Lemma 8.3. Suppose that \(g, h \in G \) and that \(l_V(g), l_V(h), l_V(gh) \geq 20 \). Then the product \(gh \) has one of the following types:

1. If \(l_V(gh) < l_V(g) + l_V(h) \), we have the picture as in Figure 8. That is, we can write \(E_{gh} = [x_1, p] \cup [p, x_2] \) so that the 10-neighborhood of \([x_1, p]\) contains the initial segment of \(E_g \) of length \(l_V(g) - \frac{1}{2}(l_V(g) + l_V(h) - l_V(gh)) - 10 = \frac{1}{2}(l_V(g) - l_V(h) + l_V(gh)) - 10 \) and the 10-neighborhood of \([p, x_2]\) contains the terminal segment of \(E_h \) of length \(l_V(h) - \frac{1}{2}(l_V(g) + l_V(h) - l_V(gh)) - 10 = \frac{1}{2}(l_V(h) - l_V(g) + l_V(gh)) - 10 \). In this case we say that the product is of type 1.

2. If \(l_V(gh) \geq l_V(g) + l_V(h) \), we have a picture as in Figure 9. That is, we can write \(E_{gh} = [x_1, p] \cup [p, q] \cup [q, x_2] \) so that the 10-neighborhood of \([x_1, p]\) contains \(E_g \) and the 10-neighborhood of \([q, x_2]\) contains \(gE_h \). In this case we say that the product is of type 2.
and of \([g_{i-1}x, gx]\) and of \([g_{i-1}x, gx]\) and such that \([g_{i-1}x, p_i]\) contains \(g_{i-1}E_w\), and \([p_i, g_{i+1}x]\)
contains \(g_{i}E_{w+1}\) with their initial and terminal segments of length \(c\) removed.

It is clear that \(d(p_i, p_{i+1}) \geq 2L\) and that the path \([p_i, p_{i+1}] \cup [p_{i+1}, p_{i+2}]\) is a \((1,100)\)-quasigeodesic. It follows that the path that \([x, p_1] \cup [p_1 \cup p_2] \cup \cdots \cup [p_{k-2}, p_{k-1}] \cup [p_{k-1}, gx]\) is a \(L\)-local \((1,100)\)-quasigeodesic and therefore a \((\frac{1}{2}, 200)\)-quasigeodesic. Since this path has length more than 200, it follows that \(x \neq gx\) and therefore \(g \neq 1\). \(\Box\)

8. The proof of Proposition 7.7

In this section we will indicate how to prove Proposition 7.7 using the ideas and techniques of [30]. The only change from the proof of the main theorem of [30] is that we consider a different length function. In [30] we were dealing with the distance \(d[x, gx] = d(x, gx)\), that is the length with respect to a base point. Here we are dealing with the length function \(l_V(g) = d(X(V), gx(X))\), that is the length with respect to a quasiconvex subset. We will not repeat all the details in the new setting but rather indicate why all arguments go through without change. Recall that \(x \in X(V)\). We show the following:

Proposition 8.1. Let \(m, c\) be positive numbers. Then there exist numbers \(d_1 = d_1(m, c)\), \(d_2 = d_2(m)\), \(d_3 = d_3(m, c)\) and \(d_5 = d_5(m, c)\) such that the following hold:

Any minimal \(m\)-tuple \(H = (h_1, \ldots, h_m) \in G^m\) is either Nielsen-equivalent to an \(m\)-tuple \(H' = (h'_1, \ldots, h'_m)\) such that

\[l_V(h'_1) \leq d_1 \text{ or } d(y, h'_1 y) \leq d_1 \text{ for some } y \in X \]

or \(U = \langle H \rangle \leq G\) is freely generated by \(H\) and the following hold:

1. For any \(u = h^t_1 \cdots h^t_k \in U\), the segment \([x, uz]\) lies in the \(d_2\)-neighborhood of \([x, h^t_1 x] \cup h^t_1[x, h^t_2 x] \cup \cdots \cup h^{t_k}_1 \cdots h^{t_k}_{i-1}[x, h^{t_k}_k x]\). This implies in particular that \([x, uz]\) is contained in the \(a\)-neighborhood of \(UX(V)\) where \(a = \max \{\frac{1}{2}l_V(h_i) + d_2\}\).

2. For any freely reduced \(u = h^t_1 \cdots h^t_k \in U\) we have that \(l_V(u) \geq l_V(h_i) - d_3\).

3. For any freely reduced product \(u = h^t_1 \cdots h^t_k \in U\) we have that the initial segment of the essential part \(E_{h^t_1}\) of length \(\frac{1}{2}l_V(h_1) - d_4\) lies in the \(1\)-neighborhood of \([x, uz]\).

4. If \(S\) is a subsegment of geodesic segment \([x, uz]\) for some \(u \in U\), where the length of \(S\) is greater than \(d_5\), then \(S\) intersects non-trivially the \(b\)-neighborhood of \(UX(V)\) with \(b = \max \{\frac{1}{2}l_V(h_i) - c\}\).

Since any \(G\)-tuple \((V, H)\) is equivalent to a minimal tuple, it is clear that Proposition 7.7 is an immediate consequence of Proposition 8.1.

As in [30] we can prove Proposition 8.1 by induction on \(m\). The case \(m = 0\) yields the empty statement and is therefore true. For the remainder of this section we fix two constants \(N_1\) and \(L\) such that \(N_1 > L > 0\) and that any \(N_1\)-local \((1,500)\)-quasigeodesic is a \((L, L)\)-quasigeodesic. The same argument as in [30] shows that Proposition 8.1 follows from the following statement.

Proposition 8.2. Let \(T \geq N_1\) be a constant and suppose that Proposition 8.1 holds for \(m - 1\). Then there exist numbers \(c_1 = c_1(m, T)\), \(c_2 = c_2(m)\), \(c_3 = c_3(m)\) and \(c_4 = c_4(m)\) such that the following hold.

Any minimal \(m\)-tuple \(M = (h_1, \ldots, h_m) \subset G^m\) with \(l_V(h_i) \leq l_V(h_m)\) for \(1 \leq i \leq m - 1\) is either Nielsen-equivalent to a tuple \(M' = (h'_1, \ldots, h'_m)\) such that

\[l_V(h'_1) \leq c_1 \text{ or } d(y, h'_1 y) \leq c_1 \text{ for some } y \in X \]

or \(U = \langle H \rangle\) is freely generated by \(H\) and the following hold:
of h_m by v preserves the fact that $I_V(h_mh_m) \leq I_V(h_mvh_m) + 1$ for all $v \in V$. Hence it follows from Lemma 7.5 that $I_V(h_m^+vh_m^+) \geq 2I_v(h_m) - c(m)$ for all $v \in V - 1$ and $c, c' \in \{-1, 1\}$. It remains to show that $I_V(h_m^+vh) \geq I_V(h_m) + I_V(h) - c(m)$ for all $v \in V - 1$ and $h \in H_{m-1}^{\pm 1}$.

Suppose that there exist $v \in V - 1$ and $h \in H_{m-1}^{\pm 1}$ such that $I_V(h_m^+vh) < I_V(h_m) + I_V(h) - c(m)$. In this case the same argument as in the proof of the claim shows that $I_V(h_m^+vh) < I_V(h_m) + I_V(h) - (c(m) - 50) < I_V(h_m) + I_V(h) - c(m - 1)$ which yields a contradiction to the induction hypothesis.

In order to give the proof of Proposition 7.2 we need the following statement, which is a relative version of Theorem 2 of [30]. Recall that $x \in X(V)$ and that $E_g \subseteq W_g = [x, gx]$.

Proposition 7.7. Let $m \geq 1$ be an integer. There exist constants $c_1 = c_1(m)$ and $c_2 = c_2(m)$ with the following property.

Suppose (X, d) is a strongly geodesic 1-hyperbolic G-space. Let $V \subset G$ be a non-trivial subgroup and let $H = (h_1, \ldots, h_m) \in G^m$ be an m-tuple of elements of G. Then one of the following holds:

1. The tuple H is Nielsen-equivalent to a tuple $\tilde{H} = (\tilde{h}_1, \ldots, \tilde{h}_m)$ such that for some $i \in \{1, \ldots, m\}$ either $I_V(h_i) \leq c_1$ or that $d(y, \tilde{h}_y) < c_1$ for some $y \in X$.
2. The subgroup $U := \langle H \rangle \leq G$ is free on (h_1, \ldots, h_m) and for any freely reduced product $u = h_i^{t_1} \cdots h_i^{t_k}$ the following hold:
 (a) $I_V(u) \geq \frac{1}{2} I_V(h_i) - c_2$
 (b) The initial segment of $E_{h_i^{t_1}}$ of length $\frac{1}{2} I_V(h_i) - c_2$ lies in the 1-neighborhood of $[x, uz]$.
 (c) The terminal segments of $h_i^{t_1} \cdots h_i^{t_{k-1}}E_{h_i^{t_k}}$ of length $\frac{1}{2} I_V(h_i) - c_2$ lies in the 1-neighborhood of $[x, uz]$.

We postpone the proof of Proposition 7.7 to the next section and proceed with the proof of Proposition 7.2.

Proof of Proposition 7.2. Let $c = c(m)$ be the constant provided by Lemma 7.6 and let c_1, c_2 be the constants $c_1(m), c_2(m)$ of Proposition 7.7. Further choose $L > 200$ such that any L-local $(1, 100)$-quasigeodesic in a 1-hyperbolic space is a $(\frac{1}{2}; 200)$-quasigeodesic. We will show that Proposition 7.2 holds with the constant $\mu(m) = \max(c_1, c_2, 2L + 2c + 2c_2 + 500)$.

Let $M = (V, H)$ be a minimal G-tuple, where $H = (h_1, \ldots, h_m)$.

We can assume that the statements (a)–(c) of Proposition 7.7 (2) hold for H. Indeed, if not then by Proposition 7.7 after passing to an equivalent G-tuple either case (1) or (2) of Proposition 7.2 occurs.

We can further assume that $I_V(h_i) \geq 2L + 2c + 2c_2$, since otherwise we are already in case (2) of Proposition 7.2.

The following is an immediate consequence of Proposition 7.7:

Observation: For any freely reduced product $u = h_i^{t_1} \cdots h_i^{t_k}$ we can find a $(1, 5)$-quasigeodesic ω joining x and uz such that ω contains the initial segment of $E_{h_i^{t_1}}$ of length $c + L$ and the terminal segment of $p = h_i^{t_1} \cdots h_i^{t_{k-1}}E_{h_i^{t_k}}$ or length $c + L$. Moreover, the path ω lies in the 1-neighborhood of $[x, uz]$.

We will show that any element $g \in U \ast F(H) - U$ acts non-trivially on X, which clearly implies that $(U, H) = U \ast F(H)$. In the following we will not distinguish an element of $U \ast F(H)$ from its image in G. We show that $gx \neq x$. After conjugation by an element of U we can assume that $g = w_1 w_2 \cdots w_k u_1^{-1} u_2^{-1} w_k u_k$ where $w_i \in F(H) - 1$ for $1 \leq i \leq k$, $u_i \in U - 1$ for $1 \leq i \leq k - 1$, $u_k \in U$ and $k \geq 1$. In the following we denote $w_i u_i$ by a_i for $1 \leq i \leq k$, $a_1 \cdots a_{k-1} = w_1 u_1 \cdots w_{k-1} u_{k-1}$ by g_i for $1 \leq i \leq k - 1$ and define $g_{k-1} = 1$. In particular we have $g_k = g$.

We look at the products of type $a_i a_{i+1}$ for $1 \leq i \leq k-1$. Recall that $g_{i-1} a_i = g_i$ and that $g_i a_{i+1} = g_{i+1}$.

It follows easily from the observation above and Lemma 7.6 that we can find a L-local $(1, 100)$-quasigeodesic $[g_{i-1} x, p_i] \cup [p_i, g_{i+1} x]$ from $g_{i-1} x$ to $g_{i+1} x$ such that p_i lies in the 2-neighborhood of
Suppose that there exist \(v \in V - 1, \epsilon \in \{-1, 1\} \) and \(h \in H_{m-1}^{\pm 1} \) such that \(l_V(h_m^\epsilon v h) < l_V(h_m) + l_V(h) - (c(m-1) + 50) \).

Claim. Suppose that there exist other elements \(v' \in V \) and \(h' \in H_{m-1}^{\pm 1} \) such that \(l_V(h_m^\epsilon v h') < l_V(h_m) + l_V(h') - (c(m-1) + 50) \). Then \(v = v' \) and, in particular, \(v' \neq 1 \).

The inequality \(l_V(h_m^\epsilon v h') < l_V(h_m) + l_V(h') - (c(m-1) + 50) \) implies that the terminal segment of \(E_{h_m}^\epsilon \) and the initial part of \(h_m^\epsilon v E_{h'} \) of length \(\frac{1}{2}(c(m-1) + 50) \) are 20-close. Analogously it follows from \(l_V(h_m^\epsilon v h) < l_V(h_m) + l_V(h) - (c(m-1) + 50) \) that the terminal segment of \(E_{h_m}^\epsilon \) and the initial part of \(h_m^\epsilon v E_{h} \) of length \(\frac{1}{2}(c(m-1) + 50) \) are 20-close. Together this implies that the initial parts of \(h_m^\epsilon v E_{h} \) and of \(h_m^\epsilon v E_{h'} \) of length \(\frac{1}{2}(c(m-1) + 50) \) are 40-close, see Figure 7. This implies that \(l_V((h^{-1} v^{-1} h_m^{-\epsilon})(h_m^\epsilon v h')) = l_V(h^{-1} v^{-1} h_m^{-\epsilon}) h' \leq l_V(h) + l_V(h') - c(m-1) \), which contradicts the induction hypothesis unless \(v v' = 1 \), that is unless \(v = v' \). This proves the claim.

We distinguish the cases when \(l_V(h_m h_m) \geq 2l_V(h_m) - c(m) \) and when \(l_V(h_m h_m) < 2l_V(h_m) - c(m) \). Recall that \(v \) is the unique element such that \(l_V(h_m v h) < l_V(h_m) + l_V(h) - (c(m-1) + 50) \) for some \(h \in H_{m-1}^{\pm 1} \).

Case 1: Suppose that \(l_V(h_m h_m) \geq 2l_V(h_m) - c(m) \).

Note that the choice of \(h_m \) above implies that \(l_V(h_m u h_m) \geq 2l_V(h_m) - c(m) \) for all \(u \in V \). We replace \(h_m \) by \(h_m v \) if \(\epsilon = 1 \) and by \(v^{-1} h_m \) if \(\epsilon = -1 \) and denote it again by \(h_m \). We clearly have \(l_V(h_m u h_m) \geq 2l_V(h_m) - c(m) \) for all \(u \in V \). It follows from the claim that \(l_V(h_m^\epsilon v h) \geq l_V(h_m) + l_V(h) - (c(m-1) + 50) \) for all \(v \in V - 1 \) and \(h \in H_{m-1}^{\pm 1} \). Again it follows from Lemma 7.5 that \(l_V(g_m v g_m^{-1}) \geq 2l_V(g_m) - c(1) \) for all \(v \in V - 1 \) since \(v = 1 \) is the only element of \(V \) such that \(l_V(g_m v g_m^{-1}) \leq 2l_V(h_m) - 200 \) and since \(c(m) \geq 300 \). After making the same change to \(h_m \) that correspond to products of type \(h_m^\epsilon v h \) the assertion follows.

Case 2: Suppose that \(l_V(h_m h_m) \leq 2l_V(h_m) - c(m) \).

We replace \(h_m \) by \(v^{-1} h_m \). It follows as above that \(l_V(h_m^\epsilon v h) \geq l_V(h_m) + l_V(h) - (c(m-1) + 50) \) for all \(v \in V - 1 \) and \(h \in H_{m-1}^{\pm 1} \). Since \(l_V(v^{-1} h_m u h) = l_V(h_m u h) \) it follows as in Case 1 that after this replacement \(l_V(h_m u h) \geq l_V(h_m) + l_V(h) - c(m) \) for all \(u \in V - 1 \) and \(h \in H_{m-1}^{\pm 1} \). Note that conjugation.
The above statements clearly imply that \(d(x_2, x'_2) \leq 40 \). However, it follows from Lemma 4.4 that
\[
[x_2, y_2] \cup [y_2, (g_1 u g_2^{-1}) y_2] \cup [(g_1 u g_2^{-1}) y_2, (g_1 u g_2^{-1}) x_2] = [x_2, y_2] \cup [y_2, y'_2] \cup [y'_2, x'_2]
\]
is a \((1, 100)\)-quasigeodesic. Therefore \(d(x_2, x'_2) \geq 100 \) since the path \([x_2, y_2] \cup [y_2, y'_2] \cup [y'_2, x'_2]\) is at least of length 200. This yields a contradiction.

\[\square\]

The following lemma in a certain sense mimics the lexicographical part of the order in the Nielsen method for free groups and groups acting on simplicial trees.

Lemma 7.6. For any integer \(m \geq 1 \) there exists a constant \(c = c(m) \geq 0 \) such that the following holds.

Let \(V' \leq G \) be a non-trivial subgroup and let \(M' = (V'; H') \) be a \(G \)-tuple with \(H' = (h'_1, \ldots, h'_m) \).

Then \(M \) is equivalent to a minimal tuple \(M = (V; H = (h_1, \ldots, h_m)) \) such that

\[
l_V(h_v h) \geq l_V(h) + l_V(h) - c
\]

for any \(h, h' \in \{h_1, \ldots, h_m\}^{\pm 1} \) and any \(v \in V - 1 \).

Furthermore the initial segment of \(E_h \) of length \(l_V(h) - \frac{1}{2} c \) and the terminal segment of \(h_v E_h \) of length \(l_V(h) - \frac{1}{2} c \) lie in the \(10\)-neighborhood of \(E_{h_v h} \) if \(l_V(h_v h) > 0 \).

Proof. We first replace the \(G \)-tuple \((V'; H')\) by a minimal \(G \)-tuple \((V; H)\). In the course of the proof we modify the tuple \(H \) (while keeping the same notation) by replacing an element \(h_i \) by an element \(v_1 h_i v_2 \) for some \(v_1, v_2 \in V \) and \(i \in \{1, \ldots, m\} \). Since \(l_V(h) = l_V(v_1 h_i v_2) \), it follows that these changes preserve the minimality. We will show that \(c(m) := 100(m + 2) \) satisfies the requirements of Lemma 7.6. The proof is conducted by induction on \(m \). For \(m = 0 \) the statement is trivial.

Suppose that \(m \geq 1 \), that is \(H = (h_1, \ldots, h_m) \). Note that \(c(m) \geq 300 \) and that \(c(m) = c(m - 1) + 100 \). Denote \(H_{m-1} = (h_1, \ldots, h_{m-1}) \). By induction we can assume that the conclusion of Lemma 7.6 holds for \(H_{m-1} \) and the constant \(c(m - 1) \). Choose \(v \in V \) such that \(l_V(h_m v h_m) \leq l_V(h_m v' h_M) + 1 \) for all \(v' \in V \) and replace \(h_m \) by \(h_m v \). Note that by Lemma 7.5 this choice of \(v \) is unique if there exists a \(v \in V \) such that \(l_V(h_m v h_m) < 2l_V(h_m) - 200 \). We denote the new element again by \(h_m \).

We first show that the conclusion holds for products of type \(h_m^{c_1} v h_m^{c_2} \) with \(v \in V - 1 \) and \(c_1, c_2 \in \{-1, 1\} \). For products of type \(h_m^{c_1} v h_m^{-c_2} \) with \(c \in \{-1, 1\} \) this follows from Lemma 7.5 and the fact that the unique \(v \) such that \(l_V(h_m^{c_1} v h_m^{-c_2}) \leq l_V(h_m) + l_V(h_m) - 200 \) is clearly \(v = 1 \). For products of type \(h_m^{c_1} v h_m^{c_2} \) the conclusion of Lemma 7.6 follows from Lemma 7.5 and from our choice of \(v \) in the replacement of \(h \) above.

It remains to consider products of type \(h_m^{c_1} v h \) with \(c \in \{-1, 1\} \), \(h \in H_{m-1} = H_{m-1} \cup H_{m-1} \) and \(v \in V - 1 \). If \(l_V(h_m^{c_1} v h) \geq l_V(h_m) + l_V(h) - c(m) \) for all products of this type, there is nothing to prove.
Because of Lemma 7.4 we will often omit the reference to the base-point \(x \in Z(V) \) and denote the stable part \(E'_g \) by \(E_g \).

The following lemma gives us some information about essential parts of the products of type \(g_1 v g_2 \) where \(g_1, g_2 \in G \) and \(v \in V \).

Lemma 7.5. For any \(g_1, g_2 \in G \) with \(l_V(g_1) \geq 100 \) and \(l_V(g_2) \geq 100 \) the following hold:

1. There exists at most one \(v \in V \) such that \(l_V(g_1 v g_2) \leq l_V(g_1) + l_V(g_2) - 200 \).
2. If \(l_V(g_1 v g_2) > l_V(g_1) + l_V(g_2) - 200 \) then the initial segment of \(E_{g_1} \) of length \(l_V(g_1) - 100 \) and the terminal segment of \(g_1 v E_{g_2} \) of length \(l_V(g_2) - 100 \) lie in the 10-neighborhood of \(E_{g_1 v g_2} \).
3. If \(l_V(g_1 v g_2) \leq l_V(g_1) + l_V(g_2) - 200 \) then the initial segment of \(E_{g_1} \) of length \(l_V(g_1) - \frac{1}{2}(l_V(g_1) + l_V(g_2) - l_V(g_1 v g_2)) \) and the terminal segment of \(g_1 v E_{g_2} \) of length \(l_V(g_2) - \frac{1}{2}(l_V(g_1) + l_V(g_2) - l_V(g_1 v g_2)) \) lie in the 10-neighborhood of \(E_{g_1 v g_2} \). Furthermore the terminal segment of \(E_{g_2} \) of length 100 and the initial segment of \(g_1 v E_{g_2} \) of length 100 are 10-Hausdorff close.

Proof. It suffices to prove (1), as (2) and (3) then follow easily from the definitions of hyperbolicity and of the essential part.

Let \(v \in V \) be such that \(l_V(g_1 v g_2) \) is almost minimal, that is to say for any \(v' \in V \) we have \(l_V(g_1 v g_2) \leq l_V(g_1 v' g_2) + 1 \). After replacing \(g_1 \) with \(g_1 v \) we can assume that in fact \(v = 1 \).

If \(l_V(g_1 g_2) > l_V(g_1) + l_V(g_2) - 200 \) then there is nothing to prove.

Suppose that \(l_V(g_1 g_2) \leq l_V(g_1) + l_V(g_2) - 200 \). Since geodesic triangles in \(X \) are 1-thin, it follows that \(W_{g_1 g_2} \) lies in 1-neighborhood of the union of the initial segment of \(W_{g_1} \), of length \(l(W_{g_1}) - k \) and the terminal segment of \(g_1 W_{g_2} \), of length \(l(W_{g_2}) - k \) for some positive integer \(k \) and the terminal segment of \(W_{g_1} \), and the initial segment of \(g_1 W_{g_2} \) of length \(k \) is 1-Hausdorff close.

It follows as in the proof of Lemma 7.4 that the terminal segment \([x_1, x_2]\) of \(E_{g_1} \) of length 100 and the initial segment \([y_2, x_2]\) of \(g_1 E_{g_2} \) of length 100 are 10-Hausdorff close. Thus we have a picture as in Figure 5.

Now suppose that there exists an element \(u \in V - 1 \) such that \(l_V(g_1 u g_2) \leq l_V(g_1) + l_V(g_2) - 200 \). The same argument as above shows that the terminal segment \([x_1, y_1]\) of \(E_{g_1} \) of length 100 and the initial segment \([y_2, x_2]\) of \(g_1 u E_{g_2} \) of length 100 are 10-Hausdorff close. It is clear that \(x_2' = (g_1 u g_1^{-1}) x_2 \) and that \(y_2' = (g_1 v g_1^{-1}) y_2 \), that is we have the picture illustrated in Figure 6.
Proposition 7.2. For any integer $m \geq 1$ there exists a constant $R(m) > 0$ with the following property.

Suppose (X, d) is a 1-hyperbolic strongly geodesic G-space. Let $V \leq G$ be a non-trivial subgroup and $H = (h_1, \ldots, h_m) \in G^m$ (where $m \geq 1$) be such that the G-pair $M = (V; H)$ is minimal. Let $U = \langle V \cup \{h_1, \ldots, h_m\} \rangle \leq G$. Then either $U = V \ast F(H)$ or after replacing M by an equivalent pair $M' = (V'; H' = (h'_1, \ldots, h'_m))$ one of the following holds:

1. $\ell_V(h'_i) \leq R(m)$ for some $i \in \{1, \ldots, m\}$.
2. There exists a $x \in X$ such that $d(x, h'_i x) \leq R(m)$ for some $i \in \{1, \ldots, m\}$.

Convention 7.3 (Essential part with respect to a subgroup $V \leq G$). Let $V \leq G$ be a non-trivial subgroup. We denote by $Y(V)$ the 10-neighborhood of $X(V)$ in X. Since $X(V)$ is 4-quasiconvex and V-invariant and X is 1-hyperbolic, it is clear that $Y(V)$ is also V-invariant and 12-quasiconvex.

Choose a base-point $x \in Z(V) \subset X(V) \subset Y(V)$. Recall that $X(V)$ contains all geodesic segments joining points of $Z(V)$.

Let $g \in G$ be such that $\ell_V(g) > 40$. We choose a geodesic segment $W_g = [x, gx]$ and look at the set $C_g = W_g - (Y(V) \cup gY(V))$. It is clear that C_g is non-empty and that some component of C_g is of length at least $\ell_V(g) - 20$. It is also easy to see that at most one component of C_g is of length greater than 20. Thus there is a unique component of C_g of length greater than 20. We call this component the essential part of W_g relative x and denote it by E_g^x.

It is easy to see that the definition of E_g^x does not depend very much on the choice of x and that the length of the stable part is close to the V-length of g.

Lemma 7.4. Let $V \leq G$ be a non-trivial subgroup and let $g \in G$ be such that $\ell_V(g) > 40$. Let $[x_1, x_2] = [X(V), gX(V)]$ be a bridge.

1. For any $x, y \in Z(V)$ the stable parts E_g^x and E_g^y are 10-Hausdorff close.
2. For any $x \in Z(V)$ we have $\ell_V(g) - 20 \leq \ell(E_g^x) \leq \ell_V(g) + 20$.

Proof. Choose any $y_1, y_2, y_3, y_4 \in Z(V)$ and any two geodesic segments $W_1 = [y_1, gy_2]$ and $W_2 = [y_3, gy_4]$. Define E_i to be the unique component of length greater than 20 of $W_i - (Y(V) \cup gY(V))$ for $i = 1, 2$. Choose a bridge $[x_1, x_2] = [X(V), gX(V)]$. Since geodesic quadrilaterals are 2-thin, it follows that E_1 and E_2 lie in the 2 neighborhood of $[x_1, x_2]$. Moreover, it is easy to see that both E_1 and E_2 are 5-Hausdorff close to $[x_1, x_2] - (X(V) \cup gX(V))$ since the bridge minimizes distance to $X(V)$ and $gX(V)$ (up to the additive constant 1). Therefore E_1 and E_2 are 10-Hausdorff close. These observations easily imply the statement of the lemma.

\[\square\]
(c) We will now observe that A is contained in a bounded neighborhood of $X(U)$.

Since $U_i \subseteq U$, we have $X_i = X(U_i) \subseteq X(U)$. Therefore $\bigcup_{u \in U} u(X_1 \cup \cdots \cup X_n)$ is contained in $X(U)$. For any two terminal vertices p, q of a tree-component T of Ω the path $[p, q]_{\Omega}$ is D-close to a geodesic $[p, q]$. Since $X(U)$ is 4-quasiconvex, and $p, q \in X(U)$ this implies that $[p, q]_{\Omega}$ is contained in the $(D + 4)$-neighborhood of $X(U)$. Hence Ω is contained in the $(D + 4)$-neighborhood of $X(U)$ and therefore so is $u\Omega$ for any $u \in U$. Thus A is contained in the $(D + 4)$-neighborhood of $X(U)$, as required.

(d) We will now observe that points outside of A are moved by elements of U by a substantial distance. Namely, we will show that $E(U) \subseteq A$. Since $E(U_i) \subseteq X(U_i) = X_i \subseteq A$, we know that for any $x \in X - A$ and any $u \in U_i$, $u \neq 1$ we have $d(x, ux) > 100$. Hence for any $u' \in U$ and any $y \in X - A$ we also have $d(y, (u')^{-1}uy) > 100$.

Suppose now $u \in U, u \notin U_i, x \in X - A$ and $d(x, ux) \leq 100$. Let z be a projection of x on A. By conjugation of u in U we may assume that $z \in \Omega \cup X_1 \cup \cdots \cup X_n$. We may further assume that u has syllable length at least 2, that is $u = u_1 \cdots u_k$, where $k \geq 2$ where $k \geq 1$, $u_j \in U_i, u_j \neq 1$ and where $i_j \neq i_{j+1}$. Let σ be a path from z to uz constructed as in the proof of (1). Then the length of σ is at least $d_{\Omega}(p_1, q_2)$. By assumption

$$d_{\Omega}(p_1, q_2) \geq d(p_1, q_2) \geq d(X_i, X_i) \geq K_5(K_5 + 10L + 20).$$

Since σ is a (K_5, K_5)-quasigeodesic, this implies that

$$d(z, uz) \geq K_5(K_5 + 10L + 20)/K_5 - K_5 = 10L + 20.$$

Since A is L-quasiconvex, z is a projection of x on A and uz is a projection of ux on A, Lemma 3.11 implies that $d(x, uz) \geq 2L$. Since L was chosen $L > 100$, this implies $d(x, uz) > 200$ and hence $x \notin E(U)$. Thus we have established that $E(U) \subseteq A$.

We now know that A is U-invariant, $(L + 5)$-quasiconvex, contains $E(U)$ and is contained in $(D + 4)$-neighborhood of $X(U)$. Therefore by Lemma 4.5 the sets A and $X(U)$ are $(3L + 3D + 26)$-Hausdorff close.

Thus we have verified that Proposition 6.3 holds with

$$C(n) = K_5^2 + 10K_5 + K_5(K_5 + 10L + 20) + (3L + 3D + 26)$$

\[\square \]

7. The case of one elliptic subgroup

As before, in this and the next sections we assume that (X, d) is a 1-hyperbolic strongly geodesic G-space.

Suppose that $g \in G$ and that $V \leq G$ is a non-trivial subgroup. We denote by $l_V(g)$ the distance

$$l_V(g) := d(X(V), gX(V)).$$

We will refer to $l_V(g)$ as V-length of g, or the length of g relative V. It follows from the definition of l_V that $l_V(g) = l_V(v_1 g v_2)$ for any $g \in G$ and $v_1, v_2 \in V$ since $d(X(V), v_1 g v_2 X(V)) = d(X(V), v_1 g X(V)) = d(v_1^{-1} X(V), v_1^{-1}(v_1 g X(V))) = d(X(V), g X(V))$.

Definition 7.1 (Minimality). Let $M = (V; H)$ be a G-pair with $H = (h_1, \ldots, h_m)$, where $m \geq 1$ and V is a non-trivial subgroup of G. We define the V-length $|H|_V$ of H as

$$|H|_V := l_V(h_1) + \cdots + l_V(h_n).$$

We will also refer to $|H|_V$ as the complexity of the G-tuple $M = (V; H)$. We say that a pair $M = (V; H)$ is minimal if for any other pair $M = (V'; H')$ equivalent to M we have $|H|_V \leq |H'|_{V'} + 1$.

Minimal pairs clearly exist in every equivalence class. The main result in this section is the following:
Thus we have verified that Proposition 6.3 holds with
\[C(n) = K_0^3 + 10K_6 + K_0(K_6 + 10L + 20) + (3L + 3D + 26) \]

\[\square \]

Proof of Proposition 6.3. Let \(n \geq 2 \) and \(K_4(n) > K_3(n) > K_2(n) > K_1(n) > D(n) \) be constants provided by Lemma 6.6, Lemma 5.9, Lemma 5.8, Lemma 5.7 and Proposition 5.6 accordingly.

Let \(K_5(n) > K_4(n) \) be such that any \(K_5 \)-local \((K_4,K_4)\)-quasigeodesic is a global \((K_5,K_5)\)-quasigeodesic. Let \(L > 100 \) be such that any two \((K_5,K_5)\)-quasigeodesics in \(X \) with common endpoints are \(L \)-Hausdorff close.

Suppose now that \(M = (U_1, \ldots, U_n; (-)) \) is a minimal \(G \)-tuple such that \(d(X(U_i), X(U_j)) > K_3^2 + 10K_5 + K_5(K_5 + 10L + 20) \) for \(i \neq j \). Denote \(X_i = X(U_i) \) for \(i = 1, \ldots, n \) and let \(\Omega = \Omega(X_1, \ldots, X_n) \) be a minimal connector.

(a) We will first establish that \(U \) is indeed a free product \(U = U_1 * U_2 * \ldots * U_n \). Choose a point \(z \in \Omega \cup X_1 \cup \ldots \cup X_n \).

Let \(u = u_1 u_2 \cdots u_k \) be a strictly alternating product, where \(k \geq 1 \), \(u_j \in U_{i_j} \), \(u_j \neq 1 \) and where \(i_j \neq i_{j+1} \).

For each \(j = 1, \ldots, k - 1 \) let \(p_j \in X_{i_j} \), be the \(d_\Omega \)-closest to \(X_{i_{j+1}} \), point of \(X_{i_j} \). Similarly, for each \(j = 2, \ldots, k \) let \(q_j \in X_{i_j} \) be the \(d_\Omega \)-closest to \(X_{i_{j-1}} \), point of \(X_{i_j} \). Thus \(p_j, q_j \in X_{i_j} \) are terminal vertices of \(\Omega \). Since \(u_j \in U_{i_j} \) we have \(u_j X_i = X_i \) and \(u_j p_j, u_j q_j \in X_{i_j} \). Note that since \(i_j \neq i_{j+1} \) we have \(d(X_{i_j}, X_{i_{j+1}}) > K_3^2 + 10K_5 \). Hence \(d_\Omega(p_j, q_{j+1}) \geq d(p_j, q_{j+1}) > K_3^2 + 10K_5 \).

Consider the path
\[
\sigma = [z, u_1 p_1]_\Omega \cup u_1[p_1, q_2]_\Omega \cup u_1[q_2, u_2 p_2] \cup u_1 u_2[p_2, q_3]_\Omega \cup u_1 u_2[q_3, u_3 p_3] \cup \ldots
\]
\[
\ldots \cup u_1 u_2 \cdots u_{k-1} [p_{k-1}, u_k q_k]_\Omega \cup u_1 u_2 \cdots u_{k-1} u_k [q_k, z]_\Omega.
\]

It is clear that \(\sigma \) is a path from \(z \) to \(uz \). By Lemma 6.6 each path \([p_{k-1}, q_k]_\Omega \cup [q_k, u_k p_k] \cup [p_k, q_k]_\Omega \) is a \((K_4,K_4)\)-quasigeodesic. Similarly, the paths \([z, u_1 p_1]_\Omega \cup [p_1, q_2]_\Omega \) and \([p_{k-1}, u_k q_k]_\Omega \cup [q_k, z]_\Omega \) are \((K_4,K_4)\)-quasigeodesic. Since \(d_\Omega(p_j, q_{j+1}) \geq 10K_5 \) for \(j = 1, \ldots, k-1 \), the path \(\sigma \) is a \((K_5,K_5)\)-quasigeodesic. Hence by the choice of \(K_5 \) the path \(\sigma \) is a global \((K_5,K_5)\)-quasigeodesic. If \(k = 1 \) then \(u = u_1 \neq 1 \) by the choice of \(u \). If \(k \geq 2 \) then the length of \(\sigma \) is at least \(K_3^2 + 10K_5 \) and hence
\[
d(z, uz) \geq (K_3^2 + 10K_5)/K_5 - K_5 > 0
\]

Hence \(u \neq 1 \). Thus we have established that \(U \) is indeed a free product \(U = U_1 * U_2 * \ldots * U_n \).

(b) Let
\[
A = \bigcup_{u \in U} u(\Omega \cup X_1 \cup \ldots \cup X_n).
\]

We can now show that \(A \) is quasiconvex in \(X \). Recall that by Lemma 5.9 for any \(a_1, a_2 \in A \) any \(\Omega \)-geodesic \([a_1, a_2]_\Omega \) is \((K_3, K_3)\)-quasigeodesic. Since \(K_5 > K_3 \), the path \([a_1, a_2]_\Omega \) is also \((K_5, K_5)\)-quasigeodesic. Since \(A \) is obviously \(U \)-invariant, to see that \(A \) is \(C \)-quasiconvex it suffices to show that for any \(z, z' \in A \) and \(u \in U \) a geodesic \([z, uz'] \) is contained in a \(C \)-neighborhood of \(A \). Assume \(u \neq 1 \). Consider the \(1 \)-thin geodesic triangle \([z, uz] \cup [z, z'] \cup [z, uz'] \). Let \(\sigma \) be a path from \(z \) to \(uz \) as in (1).

Since \(\sigma \) is a \((K_5, K_5)\)-quasigeodesic, by the choice of \(L \) the paths \(\sigma \) and \([z, uz] \) are \(L \)-close. Since \(X_i \) are \(4 \)-quasiconvex, the construction of \(\sigma \) implies that \(\sigma \) is contained in the \(4 \)-neighborhood of \(A \). Thus \([z, uz] \) is contained in \((L+4)\)-neighborhood of \(A \). Since \([z, z']_\Omega \) is a \((K_5, K_5)\)-quasigeodesic, the path \(u[z, z'] \) is contained in \((L+4)\)-neighborhood of \(A \). Hence by the definition of hyperbolicity \([z, uz'] \) is contained in \((L+5)\)-neighborhood of \(A \). This is also obviously true for \(u = 1 \). Thus we have proved that \(A \) is \((L+5)\)-quasiconvex.
$$(K_5, K_5)$$-quasigeodesic. Since $d_{\Omega}(p_j, q_{j+1}) \geq 10K_6$ for $j = 1, \ldots, k-1$, the path σ is a K_6-local (K_5, K_5)-quasigeodesic. Hence by the choice of K_6 the path σ is a global (K_6, K_6)-quasigeodesic. If $k = 1$ then $u = u_1 \neq 1$ by the choice of u. If $k \geq 2$ then the length of σ is at least $K_6^2 + 10K_6$ and hence

$$d(z, uz) \geq (K_6^2 + 10K_6)/K_6 - K_6 > 0$$

Hence $u \neq 1$. Thus we have established that U is indeed a free product $U = U_1 \ast U_1 \ast \cdots U_n$.

(b) Let

$$A = \bigcup_{u \in U} u(\Omega \cup X_1 \cup \cdots \cup X_n).$$

We can now show that A is quasiconvex in X. Recall that by Lemma 5.9 for any $a_1, a_2 \in A$ any Ω-geodesic $[a_1, a_2]_\Omega$ is (K_3, K_3)-quasigeodesic. Since $K_6 > K_3$, the path $[a_1, a_2]_\Omega$ is also (K_6, K_6)-quasigeodesic. Since A is obviously U-invariant, to see that A is C-quasiconvex it suffices to show that for any $z, z' \in A$ and $u \in U$ a geodesic $[z, uz']$ is contained in a C-neighborhood of A. Assume $u \neq 1$. Consider the 1-thin geodesic triangle $[z, uz] \cup u[z, z'] \cup [z, uz']$. Let σ be a path from z to uz as in (1). Since σ is a (K_6, K_6)-quasigeodesic, by the choice of L the paths σ and $[z, uz]$ are L-close. Since X_i are 4-quasiconvex, the construction of σ implies that σ is contained in the 4-neighborhood of A. Thus $[z, uz]$ is contained in $(L + 4)$-neighborhood of A. Since $[z, z']_\Omega$ is a (K_6, K_6)-quasigeodesic, the path $u[z, z']$ is contained in $(L + 4)$-neighborhood of A. Hence by the definition of hyperbolicity $[z, uz']$ is contained in $(L + 5)$-neighborhood of A. This is also obviously true for $u = 1$. Thus we have proved that A is $(L + 5)$-quasiconvex.

(c) We will now observe that A is contained in a bounded neighborhood of $X(U)$.

Since $U_i \subseteq U$, we have $X_i = X(U_i) \subseteq X(U)$. Therefore $\bigcup_{i \in U} u(X_1 \cup \cdots \cup X_n)$ is contained in $X(U)$. For any two terminal vertices p, q of a tree-component T of Ω the path $[p, q]_\Omega$ is D-close to a geodesic $[p, q]$. Since $X(U)$ is 4-quasiconvex, and $p, q \in X(U)$ this implies that $[p, q]_\Omega$ is contained in the $(D + 4)$-neighborhood of $X(U)$. Hence Ω is contained in the $(D + 4)$-neighborhood of $X(U)$ and therefore so is $u\Omega$ for any $u \in U$. Thus A is contained in the $(D + 4)$-neighborhood of $X(U)$, as required.

(d) We will now observe that points outside of A are moved by elements of U by a substantial distance. Namely, we will show that $E(U) \subseteq A$. Since $E(U_i) \subseteq X(U_i) = X_i \subseteq A$, we know that for any $x \in X - A$ and any $u \in U$, $u \neq 1$ we have $d(x, uz) > 100$. Hence for any $u \in U$ and any $y \in X - A$ we also have $d(y, u^{-1}y) > 100$.

Suppose now $u \in U$, $u \notin U_i$, $x \in X - A$ and $d(x, uz) \leq 100$. Let z be a projection of x on A. By conjugation of u in U we may assume that $z \in \Omega \cup X_1 \cup \cdots \cup X_n$. We may further assume that u has syllable length at least 2, that is $u = u_1 \cdots u_k$, where $k \geq 2$ where $k \geq 2, u_j \in U_i$, $u_j \neq 1$ and where $i_j \neq i_{j+1}$. Let σ be a path from z to uz constructed as in the in the proof of (1). Then the length of σ is at least $d_{\Omega}(p_1, q_2)$. By assumption

$$d_{\Omega}(p_1, q_2) \geq d(p_1, q_2) \geq d(X_{i_1}, X_{i_2}) \geq K_6(K_6 + 10L + 20).$$

Since σ is a (K_6, K_6)-quasigeodesic, this implies that

$$d(z, uz) \geq K_6(K_6 + 10L + 20)/K_6 - K_6 = 10L + 20.$$
Put \(V_k = U_k \) for \(k \not\in J \). Also put \(V_k = uU_ku^{-1} \) for \(k \in J \) (so that \(X(V_k) = uX_k \)). Then \((V_1, \ldots, V_n; (-))\) is equivalent to \((U_1, \ldots, U_n; (-))\) and \(\Omega' \) is such that

\[
\Omega' \cup X(V_1) \cup \cdots \cup X(V_n)
\]
is connected. The fact that \(P(\Omega') < P(\Omega) - 1 \) contradicts the assumption that \((U_1, \ldots, U_n; (-))\) is a minimal \(G \)-tuple.

Thus we in fact have \(d(p, s) \leq K'(nL + 2D + 2) + K' \). We have shown in the argument above that either \(d(p', up) \leq 2D + 100 \) or the path \(\tau' = [t, p', \ldots, [p', up] \cup u[p, s] \) is \((1, 20 + 4D)\)-quasigeodesic. If \(d(p', up) \leq 2D + 100 \) then by the triangle inequality we have

\[
d(p', t) \leq d(p', up) + d(up, us) + d(us, t) \leq K'(nL + 2D + 2) + K' + 2D + 102.
\]

If \(\tau' \) is a \((1, 20 + 4D)\)-quasigeodesic then \(d(t, us) \leq 2 \) implies that the length of \(\tau \) is at most \(22 + 4D \). Hence \(d(p', t) = \leq 22 + 4D \). Thus in any event we see that

\[
d(p, s) \leq K'' \leq K'', \quad d(p', t) \leq K''
\]

where \(K'' = K'(nL + 2D + 2) + K' + 4D + 102 \). Thus the Claim is verified and Lemma 6.5 is proved. \(\square \)

Corollary 6.6. There exists a constant \(K_5(n) > K_4(n) > 0 \) with the following property.

Let \(p', q' \in (\Omega \cup X_1 \cup \cdots \cup X_n) - X_i \) and \(p, q \in X_i \) such that \(d_\Omega(X_i, p') = d_\Omega(p, p') \) and \(d_\Omega(X_i, q') = d_\Omega(q, q') \). Then the path

\[
\sigma = [g_i, p]_{\Omega} \cup [p, up'] \cup [up', uq']
\]
is a \((K_5, K_5)\)-quasigeodesic.

Proof. This follows directly from Lemma 6.5 and Lemma 5.9. \(\square \)

Proof of Proposition 6.3. Let \(n \geq 2 \) and \(K_5(n) > K_4(n) > K_3(n) > K_2(n) > K_1(n) > D(n) \) be constants provided by Corollary 6.6, Lemma 6.5, Lemma 5.9, Lemma 5.8, Lemma 5.7 and Proposition 5.6 accordingly.

Let \(K_6(n) > K_5(n) \) be such that any \(K_6 \)-local \((K_5, K_5)\)-quasigeodesic is a global \((K_6, K_6)\)-quasigeodesic. Let \(L > 100 \) be such that any two \((K_6, K_6)\)-quasigeodesics in \(X \) with common endpoints are \(L \)-Hausdorff close.

Suppose now that \(M = (U_1, U_2, \ldots, U_n; (-)) \) is a minimal \(G \)-tuple such that \(d(X(U_i), X(U_j)) > K_2^2 + 10K_6 + K_6(K_6 + 10L + 20) \) for \(i \neq j \). Denote \(X_i = X(U_i) \) for \(i = 1, \ldots, n \) and let \(\Omega = \Omega(X_1, \ldots, X_n) \) be a minimal connector.

(a) We will first establish that \(U \) is indeed a free product \(U = U_1 \ast U_2 \ast \cdots \ast U_n \). Choose a point \(z \in \Omega \cup X_1 \cup \cdots \cup X_n \).

Let \(u = u_1u_2 \cdots u_k \) be a strictly alternating product, where \(k \geq 1 \), \(u_j \in U_i, u_j \neq 1 \) and where \(i_j \neq i_{j+1} \).

For each \(j = 1, \ldots, k - 1 \) let \(p_j \in X_{i_j} \) be the \(d_\Omega \)-closest to \(X_{i_{j+1}} \) point of \(X_{i_j} \). Similarly, for each \(j = 2, \ldots, k \) let \(q_j \in X_{i_j} \) be the \(d_\Omega \)-closest to \(X_{i_{j-1}} \) point of \(X_{i_j} \). Then \(p_j, q_j \in X_{i_j} \) are terminal vertices of \(\Omega \). Since \(u_j \in U_i \), we have \(u_jX_{i_j} = X_{i_j} \) and \(u_jp_j, u_jq_j \in X_{i_j} \). Note that since \(i_j \neq i_{j+1} \) we have \(d(X_{i_j}, X_{i_{j+1}}) > K_3^2 + 10K_6 \). Hence \(d_\Omega(p_j, q_{j+1}) \geq d(p_j, q_{j+1}) > K_3^2 + 10K_6 \).

Consider the path

\[
\sigma = [z, u_1p_1]_{\Omega} \cup u_1[p_1, q_2]_{\Omega} \cup u_1[u_2p_2] \cup u_1u_2[p_2, q_3]_{\Omega} \cup u_1u_2u_3[q_3, u_4p_4]_{\Omega} \cup \cdots \cup u_1u_2 \cdots u_{k-1}[p_{k-1}, u_kq_k]_{\Omega} \cup u_1u_2 \cdots u_{k-1}u_kq_k \cup u_kz_{\Omega}
\]

It is clear that \(\sigma \) is a path from \(z \) to \(uz \). By Corollary 6.6 each path \([p_{k-1}, q_k]_{\Omega} \cup [q_k, u_kq_k] \cup u_k[p_k, q_k]_{\Omega} \) is a \((K_5, K_5)\)-quasigeodesic. Similarly, the paths \([z, u_1p_1]_{\Omega} \cup u_1[p_1, q_2]_{\Omega} \) and \([p_{k-1}, u_kq_k] \cup u_k[q_k, z]_{\Omega} \) are
By Proposition 5.6 there are points $t' \in T'$ and $s' \in T$ such that $d(t, t') \leq D$ and $d(s, s') \leq D$ and hence $d(t', u s') \leq 2D + 2$. If $p = p'$, let $r \in T$ be such that $[p, r]_{\Omega} = [p, s']_{\Omega} \cap [p, t']_{\Omega}$. If $p \neq p'$ let $r = p$.

By part (1) of the lemma the path $[r, p]_{\Omega} \cup [p, u p] \cup u[p, s]$ is a (K', K')-quasigeodesic.

Suppose first $p = p'$ and $d(r, t') \leq nL$. Then $d(r, u s) \leq d(r, t') + d(t', u s') \leq nL + 2D + 2$. Therefore the length of the path $[r, p]_{\Omega} \cup [p, u p] \cup u[p, s]$ is at most $K'(nL + 2D + 2) + K'$. Hence $d(p, s) \leq K'(nL + 2D + 2) + K'$, contrary to our assumptions.

Thus either $p = p'$ and $d(r, t') \geq nL$ and or $p \neq p'$. Assume first that $p = p'$ and $d(r, t') \geq nL$. Then $d_{\Omega}(r, t) \geq nL$. Since the paths $[p, t]$ and $u[p, s]$ are $2D + 100$-Hausdorff close, we conclude that $\lvert d(p, t) - d(p, s) \rvert \leq 4D + 200$ and hence $\lvert d(p, s') - d(p, t') \rvert \leq 6D + 200$. This implies that $\lvert d(r, s') - d(r, s') \rvert \leq 12D + 400$ and so $d_{\Omega}(r, s') \geq d(r, s') \geq nL - 12D - 400$. If $p \neq p'$ then $r = p$. In this case $d(p, s) > nL$ implies $d(r, s') \geq nL - D$. Thus in both cases $d(r, s') \geq nL - 12D - 400$.

The tree T has at most $n - 2$ branch-points. Therefore there is a segment $[r_1, s_1]_{\Omega} \subseteq [r, s]_{\Omega}$ such that the interior of $[r_1, s_1]_{\Omega}$ has no branch-points and such that

$$d_{\Omega}(r_1, s_1) \geq (nL - 12D - 400)/n \geq L/2$$

(where the last inequality follows from the choice of L). Since $[p, t']_{\Omega}$ and $u[p, s]_{\Omega}$ are $4D + 100$-Hausdorff close, there are points $r_2, s_2 \in [p, t']_{\Omega}$ such that $d(u r_1, r_2) \leq 4D + 100$ and $d(u s_1, s_2) \leq 4D + 100$.

Let J be the collection of all indices j' such that an Ω-geodesic from $X_{j'}$ to X_j passes through the interior of T (so that $j \in J$). Let Ω_1 be the union of all tree-components of Ω whose interiors intersect non-trivially Ω-geodesics from $X_{j'}$ to X_j for $j' \in J$. Thus T is contained in Ω_1 and Ω_1 is a minimal connector for the collection $X_i \cup \bigcup_{j' \in J} X_{j'}$.

Let Ω' be obtained from Ω as follows:

Remove Ω_1 from Ω and replace it by $u \Omega_1$. Then remove the segment $u[r_1, s_1]_{\Omega}$ and add geodesic segments $[u r_1, r_2]$ and $[u s_1, s_2]$ (which by the previous remarks have length at most $4D + 100$ each). Then by construction

$$P(\Omega') \leq P(\Omega) + 8D + 200 - d(r_1, s_1) \leq P(\Omega) + 8D + 200 - L/2 < P(\Omega) - 1.$$
Definition 6.2 (Minimal tuple). Let $M = (U_1, \ldots, U_n, (-))$ be a G-tuple with $n \geq 1$.

We say that M is minimal if for every G-tuple M' that is equivalent to M we have $d(M) \leq d(M') + 1$.

Once again, it is clear that every G-tuple with $n \geq 1$ and empty hyperbolic component is equivalent to a minimal tuple. The main result of this section is:

Proposition 6.3. For any integer $n \geq 2$ there exists a constant $C = C(n) > 0$ with the following property. Suppose (X, d) is a strongly geodesic 1-hyperbolic G-space. Suppose $(U_1, \ldots, U_n, (-))$ is a minimal G-tuple with $U_i \neq 1$ for $1 \leq i \leq n$ and $d(X_{U_i}, X_{U_j}) \geq C$ for $1 \leq i < j \leq n$. Then

1. The subgroup U generated by $U_1 \cup \cdots \cup U_n$ is the free product

 $U = U_1 \ast \cdots \ast U_n$

2. Denote $X_i = X(U_i)$ for $i = 1, \ldots, n$. Let $\Omega = \Omega(X_1, \ldots, X_n)$. The set $X(U)$

 is C-Hausdorff close to the set

 $\bigcup_{u \in U} u \cdot (\Omega \cup X_1 \cup \cdots \cup X_n)$

Convention 6.4. Till the end of this section, unless specified otherwise, let $U_1, \ldots, U_n \leq G$ be non-trivial subgroups of G such that the G-tuple $M = (U_1, \ldots, U_n, (-))$ is minimal. Denote $X_i = X(U_i)$ for $i = 1, \ldots, n$. We assume that $d(X_i, X_j) \geq K_3(n)$, where $K = K_3(n)$ is the constant provided by Lemma 5.9. Recall that the sets X_i are 4-quasiconvex, closed and connected since X is 1-hyperbolic. Recall also that each X_i is U_i-invariant. Let $\Omega = \Omega(X_1, \ldots, X_n)$ be a minimal connector.

The following lemma will play a crucial role in our argument.

Lemma 6.5. There exists a constant $K_4(n) > K_3(n) > 0$ with the following property.

Suppose that T and T' are tree-components of Ω, and that $p \in X_i$ is a terminal vertex of T and $p' \in X_i$ is a terminal vertex of T'. Let $q \in T$ and $q' \in T'$ be terminal vertices of T and T', respectively, such that $q, q' \not\in X_i$. Let $u \in U_i$ be a non-trivial element.

Then the path

$\sigma = [q, p]_\Omega \cup [p, up'] \cup [up', uq']$

is a (K_4, K_4)-quasigeodesic.

Proof. Recall that T' is a tree-component of Ω with terminal vertices $p' \in X_i$ and $q' \in X_k$ (where $k \neq i, k \neq j$). Note that it is possible that $p = p'$ or even that $T = T'$. Clearly it is enough to prove the following:

Claim. There is a constant $K'' > 1$ such that if $t \in [p', q']$ and $s \in [p, q]$ satisfy $d(t, us) \leq 2$, then $d(p', t) \leq K''$ and $d(p, s) \leq K''$.

Suppose now that $t \in [p', q']$ and $s \in [p, q]$ are such that $d(t, us) \leq 2$. Put $L = 24D + 1000$ and suppose that

$d(p, s) > K''(nL + 2D + 2) + K''$.

Recall by Proposition 5.6 the point p' is D-close to a projection p_1 of t on X_i. Similarly, p is D-close to a projection p_2 of s on X_i. Thus $[s, p]$ and $[t, p']$ are almost "orthogonal" to X_i. Namely, by Lemma 3.12 either $d(p', up') \leq 2D + 100$ or the path $\tau' = [t, p'] \cup [p', up'] \cup [p, s]$ is $(1, 20 + 4D)$-quasigeodesic. Since $d(t, us) \leq 2$, the former possibility implies that $[p', t]$ and $[p, s]$ are $2D + 100$-Hausdorff close. Suppose now the latter occurs and $\tau' = (1, 20 + 4D)$-quasigeodesic. Since the endpoints t and us of τ' are at most 2-apart, this implies that $d(p', t) \leq 22 + 4D$ and $d(up, us) = d(p, s) \leq 22 + 4D$, contrary to our assumption.

Thus $d(p', up') \leq 2D + 100$ and the paths $[p', t]$ and $[p, s]$ are $2D + 100$-Hausdorff close. Recall that by assumption $d(p', t) > nL$.

2. The path \([p', p] \cup [q, q']_\Omega \) is a \((K_2, K_2)\)-quasisgeodesic.

Proof. We first argue that part (2) follows from part (1). By considering a 2-thin geodesic quadrilateral with sides \([p', p], [p, q], [q, q']\) and \([q', y']\) part (1) of Lemma 5.8 and Lemma 5.2 imply that the path \([p', p] \cup [p, q] \cup [q, q']\) is a \((K_2, K_2)\)-quasisgeodesic for some constant \(K_2 = K_2(n)\). Since by Proposition 5.6 the paths \([p', p]_\Omega\) and \([q, q']_\Omega\) are \((1, D)\)-quasisgeodesic, statement (2) of Lemma 5.8 follows. Thus it suffices to establish part (1) of Lemma 5.8.

Suppose \(x \in [p, p']\) is such that for some \(y \in [q, q']\) we have \(d(x, y) \leq 2\). Assume that \(d(p, x) > n(4D + 2K_1 + 31) + D\).

By Proposition 5.6 there are points \(x' \in [p, p']_\Omega \subseteq T_p\) and \(y' \in [q, q']_\Omega \subseteq T_q\) such that \(d(x, x') \leq D\) and \(d(y, y') \leq D\). Therefore \(d(x', y') \leq 2D + 2\) and

\[
d_\Omega(p, x') \geq d(p, x') \geq d(p, x) - D > n(4D + 2K_1 + 31).
\]

We claim that the segment \([p, q]\) is short. Indeed, by Lemma 5.7 if \(p_1 \) is a projection of \(x'\) on \(A_i\) and if \(q_1\) is a projection of \(y'\) on \(A_i\) then \(d(p, p_1) \leq K_1 = K_1(n)\) and \(d(q, q_1) \leq K_1 = K_1(n)\). Let \(p_2 \in [p_1, q_1]\) be the farthest from \(p_1\) point which is contained in the 2-neighborhood of \([p_1, x']\). Similarly, let \(q_2 \in [p_1, q_1]\) be the farthest from \(q_1\) point which is contained in the 2-neighborhood of \([q_1, y']\). Since \(A_i\) is 2-quasiconvex, Lemma 3.11 implies that \(d(p_2, p_1) \leq 10\) and \(d(q_2, q_1) \leq 10\). Since the geodesic quadrilateral with vertices \(p_1, q_1, x', y'\) is 2-thin, either \(d(p_1, q_1) \leq 20\) or the segment \([p_2, q_2]_\Omega\) is contained in the 2-neighborhood of \([x', y']\). Since \(d(x', y') \leq 2D + 2\), this implies that either \(d(p_2, q_2) \leq 2D + 6\) or \(d(p_1, q_1) \leq 20\). In any event we see that \(d(p_1, q_1) \leq 2D + 26\) and hence \(d(p, q) \leq 2D + 2K_1 + 26\). Since \(d(x', y') \leq 2D + 2\), the definition of 1-hyperbolicity implies that \([p, x']\) and \([q, x']\) are \(2D + 2K_1 + 28\)-Hausdorff close. By Lemma 5.6 \([p, x']_\Omega\) and \([q, x']_\Omega\) are \(D + 1\)-close. Similarly, \([y, y']_\Omega\) and \([q, y']_\Omega\) are \(D + 1\)-close. Therefore \([p, x']_\Omega\) and \([q, y']_\Omega\) are \(4D + 2K_1 + 30\)-close.

Recall that \(T_p\) and \(T_q\) are distinct tree-components of \(\Omega\) and that \(d(p, x')_\Omega > n(4D + 2K_1 + 31)\). The tree \(T_p\) has at most \(n - 2\) branching points and therefore the interior of \([p, x']_\Omega\) has at most \(n - 2\) branching points. Let \(\Omega'\) be obtained from \(\Omega\) by removing the interior of \([p, x']_\Omega\) and for each \(\Omega\)-branching point \(b\) in the interior of \([p, x']_\Omega\) adding to the result a geodesic path \([b, b']\) from \(b\) to \(b' \in [q, y']\) with \(d(b, b') \leq 4D + 2K_1 + 30\). Then \(\Omega' \cup A_1 \cup \ldots A_n\) is clearly connected, but

\[
P(\Omega') \leq P(\Omega) - d_\Omega(p, x') + n(4D + 2K_1 + 30) < P(\Omega) - 1
\]

which contradicts the assumption that \(\Omega\) is a minimal connector. Thus \(d(p, x) \leq n(4D + 2K_1 + 31) + D\) and part (1) of the lemma holds with \(K_2 = n(4D + 2K_1 + 31) + D\).

Lemma 5.9. There exists a constant \(K_3 = K_3(n) > K_2(n) > 0\) with the following property.

Suppose \(n \geq 2\) and \(A_1, \ldots, A_n\) are connected closed nonempty 4-quasiconvex sets in \(X\) such that \(d(A_i, A_j) \geq K_3(n)\) for \(i \neq j\). Let \(\Omega = \Omega(A_1, \ldots, A_n)\) be a minimal connector. Then for any \(a, b \in \Omega \cup A_1 \cup \ldots \cup A_n\) any \(\Omega\)-geodesic \([a, b]_\Omega\) is a \((K_3, K_3)\)-quasigeodesic.

Proof. Recall that \(\Omega\)-geodesics have the explicit form described in Definition 5.5. The statement of Lemma 5.9 now follows directly from Lemma 5.8 by the "pasting of quasisgeodesics" argument, that is by Lemma 3.7.

6. Proof of the Main Result in the Purely Elliptic Case

In this section we will consider \(G\)-tuples of the type \(M = (U_1, \ldots, U_n; (-))\), where the hyperbolic set \(H\) is empty. Our goal is to establish Proposition 2.4 for \(G\)-tuples of this type. Recall that by the definition of a \(G\)-tuple all \(U_i\) are non-trivial and therefore \(X(U_i) \neq \emptyset\). Till the end of this section we assume that \((X, d)\) is a 1-hyperbolic strongly geodesic \(G\)-space.

Definition 6.1. For a \(G\)-tuple \(M = (U_1, \ldots, U_n; (-))\) with \(n \geq 1\) we define

\[
d(M) := d(X(U_1), \ldots, X(U_n)).
\]
of T in its interior. Let Ω' be obtained from Ω by removing the interior of $[s, t]_{\Omega}$ and adding either the segment $[s, s'']$ or the segment $[t, t'']$ depending on which makes Ω' a connector of A_1, \ldots, A_n. (In the figure this is $[t, t'']$.)

The perimeter of Ω' can be estimated as:

$$P(\Omega') \leq P(\Omega) - d_{\Omega}(s, t) + 2D + 210 < P(\Omega) - 1,$$

which contradicts our assumption that Ω is a minimal connector of A_1, \ldots, A_n. Thus $L \leq n(2D + 210)$ and hence $d(a_1, p) \leq n(2D + 210) + d(p', p) \leq n(2D + 210) + D$. A symmetric argument shows that $d(a_2, q) \leq n(2D + 210) + D$. Hence by Lemma 5.2

$$d(a_1, a) \leq n(2D + 210) + D + 100 \leq K_1, \quad d(a_2, b) \leq n(2D + 210) + D + 100 \leq K_1$$

and

$$|d(a, b) - d(a_1, b_1)| \leq 100 + 2n(2D + 210) + 2D = K_1$$

as required. \hfill \Box

Lemma 5.8. Let $n > 0$ and $K_1(n) > D(n)$ be the constants provided by Lemma 5.7 and Proposition 5.6.

There exists a constant $K_2 = K_2(n) > K_1(n) > 0$ with the following property. Let A_1, \ldots, A_n be 4-quasiconvex closed connected subsets of X such that $d(A_i, A_j) \geq K_1(n)$ for $i \neq j$. Let $\Omega = \Omega(A_1, \ldots, A_n)$ be a minimal connector. Let $p, q \in A_i$ be terminal vertices of distinct tree-components T_p and T_q of Ω.

Let $p' \neq p$ be another terminal vertex of T_p and let $q' \neq q$ be another terminal vertex of T_q.

Then the following hold:

1. If $x \in [p, p']$ is a point such that $d(x, [q, q']) \leq 2$ then $d(p, x) \leq K_2$.

Figure 2. The new connector is shorter, yielding a contradiction to the minimality of Ω.

2. Let \(P \) be the union of all \(X \)-geodesics with endpoints in the set \(\{a_1, \ldots, a_n\} \).

Then \(P \) and \(\Omega \) are \(D \)-Hausdorff close.

Lemma 5.7. For any integer \(n \geq 2 \) there exists a constant \(K_1 = K_1(n) > D(n) > 1 \) with the following property.

Suppose \(A_1, \ldots, A_n \) are connected closed nonempty subsets of \(X \) which are \(4 \)-quasiconvex in \(X \). Suppose further that \(d(A_k, A_l) \geq K_1(n) \) for \(k \neq l \). Let \(\Omega = \Omega(A_1, \ldots, A_n) \). Let \(T \) be a tree component of \(\Omega \) and let \(a_i \in A_i, a_j \in A_j \) be two distinct terminal vertices of \(T \). Let \([a, b] = [A_i, A_j] \) be a bridge.

Then \(d(a_i, a_j) - d(a, b) \leq K_1 \), \(d(a_i, a) \leq K_1 \) and \(d(a_j, b) \leq K_1 \). Thus \([a, b] \) is almost the bridge between \(A_i \) and \(A_j \).

Proof. Let \(D = D(n) \) be the constant provided by Proposition 5.6. Put \(K_1(n) = 100 + 2n(2D+210)+2D \). Suppose that \(d(A_k, A_l) \geq K_1(n) \) for \(k \neq l \).

Notice that since \(T \) has at most \(n \) terminal vertices, it has at most \(n - 2 \) branch points. We may assume (after re-labeling) that in (1) \(i = 1, j = 2 \) and \(a_i = a_1 \), \(a_j = a_2 \). It is obvious that \(T \) is a minimal connector between those \(A_k \) which contain the terminal vertices of \(T \). It is also clear that \(T \) is a minimal connector for the set of terminal vertices of \(T \).

Consider the \(X \)-geodesic segment \([a_1, a_2] \) and a bridge \([a, b] = [A_1, A_2] \) where \(a \in A_1 \) and \(b \in A_2 \). Also let \(\alpha = [a_1, a_2]_{\Omega} \) be the \(\Omega \)-geodesic from \(a_1 \) to \(a_2 \). By Proposition 5.6 the paths \(\alpha \) and \([a_1, a_2] \) are \(D \)-close. By Lemma 5.2 there are point \(p, q \in [a_1, a_2] \) such that \(d(p, a) \leq 100 \), \(d(q, b) \leq 100 \), the segments \([a_1, p] \) and \([a_1, a] \) are \(100 \)-close, the segments \([a_2, b] \) and \([a_2, q] \) are \(100 \)-close and the segments \([p, q] \) and \([a, b] \) are \(100 \)-close. By Proposition 5.6 there a point \(p' \in [a_1, a_2]_{\Omega} \) such that \(d(p, p') \leq D(n) \). Denote the length of the \(\Omega \)-geodesic \([a_1, p']_{\Omega} \subset [a_1, a_2]_{\Omega} \) by \(L \). Suppose \(L > n(2D+210) \).

Since \(T \) has at most \(n - 2 \) branch points, these branching points subdivide the segment of \([a_1, a_2]_{\Omega}\) from \(a_1 \) to \(p' \) in at most \(n - 1 \) segments. Hence the length of one of these segments is at least \(L/n > 2D+210 \). Denote this segment by \([s, t]_{\Omega}\). In particular either \(s = a_1 \) or \(s \) is a branch point of \(T \) and either \(t = p' \) or \(t \) is a branch point of \(T \). Then there exist point \(s', t' \in [a_1, a] \) such that \(d(s, s') \leq D + 100 \) and \(d(t, t') \leq D + 100 \). Since \(A_1 \) is \(4 \)-quasiconvex, there are points \(s'', t'' \in A_1 \) such that \(d(s, s'') \leq D + 104 \) and \(d(t, t'') \leq D + 104 \). Recall that the \(\Omega \)-geodesic \([s, t]_{\Omega}\) has no branch points.
(a) The set $Y \cup A_1 \cup \cdots \cup A_n$ is connected.

(b) For any proper closed subgraph Γ of Y the set $\Gamma \cup A_1 \cup \cdots \cup A_n$ is disconnected.

We further define $d(A_1, \ldots, A_n) = \inf\{P(Y) \mid Y$ is a connector for $A_1, \ldots, A_n\}$. We say that a connector Ω for A_1, \ldots, A_n is a minimal connector if $P(\Omega) \leq d(A_1, \ldots, A_n) + 1$ and the closures of the component of $\Omega - (A_1 \cup \cdots \cup A_n)$ are trees such that branching points subdivide them into geodesic segments. A minimal connector will be denoted $\Omega(A_1, \ldots, A_n)$. We term the closures of the components of $\Omega - (A_1 \cup \cdots \cup A_n)$ the tree components of Ω.

Also, if A is a closed connected nonempty subset of X, we set $d(A) = 0$. If $n \geq 1$ and A_1, \ldots, A_n are closed nonempty connected subsets of X (not necessarily disjoint), we set $d(A_1, \ldots, A_n) := d(A'_1, \ldots, A'_p)$, where A'_1, \ldots, A'_p are the distinct connected components of $A_1 \cup \cdots \cup A_n$.

Clearly minimal connector always exists but may not be unique. However, we will see that if A_i are quasiconvex subsets sufficiently far away from each other, any two minimal connectors are Hausdorff close. Note also that for two connected sets A_1, A_2 the definition of a connector coincides with that of a bridge.

The following elementary lemma follows directly from the definition of the minimal connector. For points $x_1, \ldots, x_k \in X$ we denote $\Omega(x_1, \ldots, \{x_k\})$ by $\Omega(x_1, \ldots, x_k)$.

Lemma 5.4. Let A_1, \ldots, A_n be disjoint connected closed nonempty subsets of X (where $n \geq 2$) and let $\Omega = \Omega(A_1, \ldots, A_n)$ be a minimal connector. Then the following statements hold:

1. If $x \in A_i$, $y \in A_j$ are terminal vertices of a tree-component T of Ω, then $i \neq j$.

2. The total number of terminal vertices of tree-components T of Ω is at most $2(n-1)$.

3. Let T be a tree-component of Ω with terminal vertices b_1, \ldots, b_k. Then $T = \Omega(b_1, \ldots, b_k)$.

Suppose that A_1, \ldots, A_n are disjoint connected closed subsets of X and $\Omega = \Omega(A_1, \ldots, A_n)$ is a minimal connector. It is clear that for any $i \neq j$ there exists a unique minimal set of tree-components T_1, \ldots, T_k of Ω such that A_i and A_j belong to the same connected component of $T_1 \cup \cdots \cup T_k \cup A_1 \cup \cdots \cup A_n$. They define a sequence of sets $A_i = B_1, B_2, \ldots, B_{k+1} = A_j$ (where each $B_s \in \{A_1, \ldots, A_n\}$) and a sequence of points $b_1 \in B_1, b_2 \in B_2, b_3 \in B_3, b_4 \in B_4, b_5 \in B_5, \ldots, b_k \in B_k, b_{k+1} \in B_{k+1}$ such that for every $s = 1, \ldots, k$ the points b_{2s-1} and b_{2s} are terminal vertices of T_s.

Definition 5.5. Suppose that $x \in A_i$ and $y \in A_j$. Let the sequences $(T_i), (B_i), (b_i)$ be as above.

We then call a path of the form

$$\sigma = [x, b_1] \cup [b_1, b_2]_{T_1} \cup [b_2, b_3] \cup [b_3, b_4]_{T_2} \cup \cdots \cup [b_{2k-1}, b_{2k}]_{T_k} \cup [b_{2k}, y]$$

an Ω-geodesic from x to y and denote it by $[x, y]_{\Omega}$. Sub-paths of the above path will also be termed Ω-geodesics. The length of $[x, y]_{\Omega}$ will be denoted by $d_\Omega(x, y)$.

Clearly, any two points $x, y \in \Omega \cup A_1 \cup \cdots \cup A_n$ can be joined by an Ω-geodesic. It is also easy to see that $[x, y]_{\Omega}$ is unique if x, y belong to the same tree-component of Ω. In general $[x, y]_{\Omega}$ is unique up to the choices of appropriate geodesic segments in the sets A_i.

The following proposition follows from the standard properties of approximating trees and thin geodesic polygons in hyperbolic spaces.

Proposition 5.6. There is a constant $D = D(n)$ with the following property. Let a_1, \ldots, a_n be distinct points of X. Let $\Omega = \Omega(a_1, \ldots, a_n)$ be a minimal connector for these points. Then the following hold:

1. For any $i \neq j$ the Ω-geodesic $[a_i, a_j]_{\Omega}$ is a $(1, D)$-quasigeodesic in X which is D-Hausdorff close to any X-geodesic $[a_i, a_j]$.
5. Minimal networks

Throughout this section \((X, d)\) is a strongly geodesic 1-hyperbolic \(G\)-space.

Definition 5.1 (Bridge). For two nonempty sets \(A, B\) in a \(X\) we will say that \([a, b]\) is a bridge between \(A\) and \(B\) if \(a \in A, b \in B\) and for any \(a' \in A, b' \in B\) we have \(d(a, b) \leq d(a', b') + 1\), that is \(d(a, b) \leq d(A, B) + 1\). Since \(1 > 0\), a bridge always exists but is not necessarily unique. We will sometimes denote a bridge \([a, b]\) between \(A\) and \(B\) by \([A, B]\).

We will need the following simple lemma which states that if two quasiconvex subsets in a hyperbolic space are sufficiently far apart, then there is an almost unique bridge between these sets.

Lemma 5.2. Let \(A, B\) be nonempty 4-quasiconvex subsets of \(X\). Let \(a \in A, b \in B\) be such that \([a, b]\) is a bridge between \(A\) and \(B\). Suppose also that \(d(a, b) \geq 100\), that \(a' \in A, b' \in B\).

Then the following hold:

1. The path \([a', a] \cup [a, b] \cup [b, b']\) is \((1, 50)\)-quasigeodesic which is \(50\)-Hausdorff close to any geodesic \([a', b']\).
2. If \(d(a', b') \leq d(A, B) + R\) then \(d(a, a') \leq R + 50\) and \(d(b, b') \leq R + 50\).
3. Let \(\gamma = [a', b']\) be a geodesic connecting \(a'\) and \(b'\). Then there are points \(p, q \in [a', b']\) such that:
 (i) \(d(a, p) \leq 100\) and \(d(b, q) \leq 100\);
 (ii) The segments \([a', a]\) and \([a', p]\) are \(100\)-Hausdorff close, the segments \([b', q]\) and \([b', b']\) are \(100\)-Hausdorff close and the segments \([p, q]\) and \([a, b]\) are \(100\)-Hausdorff close.
 (iii) For any point \(x \in [p, q]\) we have \(|d(x, A) - d(x, p)| \leq 100\) and \(|d(x, B) - d(x, q)| \leq 100\).

Proof. (1) Since \([a, b]\) is a bridge between \(A\) and \(B\), it follows that \(b\) is a projection of \(a\) on \(B\) and that \(a\) is a projection of \(b\) on \(A\). Hence by Lemma 3.11 if \(x\) is a point on \([a, b]\) contained in the 1-neighborhood of \([a, a']\) then \(d(a, x) \leq 2 + 4 + 2 = 8\). Similarly, if \(y\) is a point on \([a, b]\) contained in the 1-neighborhood of \([b, b']\) then \(d(b, y) \leq 8\). Now statement (1) easily follows from applying the definition of hyperbolicity since \(d(a, b) \geq 100\).

(2) Suppose \(a', b'\) are such that \(d(a', b') \leq d(A, B) + R\). By part (1) we have
\[
d(a', b') \geq d(a, b) + d(a, a') + d(b, b') - 50
\]
If at least one of \(d(a, a'), d(b, b')\) is greater than \(R + 50\), then the above formula implies \(d(a', b') > d(a, b) + R = d(A, B) + R\), which contradicts the choice of \(a', b'\).

Part (3) follows from (1) and (2) and we leave the details to the reader. \(\Box\)

It is well known that polygons with geodesic sides in hyperbolic metric spaces look like trees. This statement easily generalizes to the case of "polygons" whose "vertices" are quasiconvex sets. Indeed, a geodesic \(n\)-gon in a 1-hyperbolic space is obviously \((n - 2)\)-thin, that is each side is contained in the \((n - 2)\)-neighborhood of the union of \(n - 1\) remaining sides. This implies that minimal networks in hyperbolic spaces are well-behaved and also look like unions of trees. We refer the reader to [24], [18] and [7] for the background information and basic facts regarding approximating trees in \(\delta\)-hyperbolic spaces.

If \(\Gamma\) is an embedded closed finite subgraph of \((X, d)\) with geodesic edges, we can assign a natural perimeter \(P(\Gamma)\) to \(\Gamma\). Namely, \(\Gamma\) can be represented as a union of finitely many geodesic segments with disjoint interiors. We put \(P(\Gamma)\) to be the sum of the lengths of these segments.

Definition 5.3 (Connector). Let \((X, d)\) be a 1-hyperbolic geodesic metric space. Let \(A_1, \ldots, A_n\) be closed connected nonempty subsets of \(X\) such that \(n \geq 2\) and \(A_i \cap A_j = \emptyset\) for \(i \neq j\). We define a connector for \(A_1, \ldots, A_n\) as an embedded closed finite subgraph \(Y\) of \(X\) such that:
by construction the path $w_{(i,j)}^m$ representing h^m is a L-local geodesic for any integer $m \geq 1$. Hence h has infinite order. However, h commutes with a non-trivial element of finite order g', which yields a contradiction.

We can now show that for a wide class of subgroups of hyperbolic groups weak convex hulls are Hausdorff-close to convex hulls.

Lemma 4.10. For any integers $n \geq 1$ and $\delta \geq 1$ there exists a constant $c = c(n, \delta) \geq 0$ with the following property. Suppose that $G = \langle S | R \rangle$ with $\#S = n$ is an almost torsion-free group with a δ-hyperbolic Cayley graph $X = \Gamma(G, S)$. Let $U < G$ be an infinite subgroup. Then X_U and $X(U)$ are c-Hausdorff close.

Proof. It clearly suffices to show that there exists a constant $c(n, \delta)$ such that $E(u, 100\delta) = \{ x \in X | d(x, uz) \leq 100\delta \}$ is contained in the c-neighborhood of X_U for all non-trivial $u \in U$.

For non-torsion elements this follows from Lemma 4.8 since it is well-known that there exists a constant $k(n, \delta) > 0$ such that $|g|_{2\delta} \geq k(n, \delta)$ for all non-torsion elements $g \in G$ (see for example [39]).

Suppose now that $u \in U$ is a non-trivial torsion element and choose $x \in E(u, 100\delta)$, so that $d(x, uz) \leq 100\delta$. Let $k_1 = k_1(n, 300\delta, \delta)$ be the constant provided by Lemma 4.9. Since U is infinite, there exists a point $p \in AU$. Since AU is U invariant we have $up \in AU$.

We will first observe that $p \neq up$. Indeed, suppose $up = u$. It follows that u maps $[x, p]$ to $[ux, p] = [ux, up]$. Since $d(x, ux) \leq 100\delta$ and since ideal triangles are 4δ-thin it follows that for every $z \in [x, p]$ with $d(z, x) \geq 100\delta$ there exists a $y \in [ux, p]$ such that $d(z, y) \leq 4\delta$. The triangle inequality gives that $d(z, y) \leq d(ux, y) \leq d(z, y) + 100\delta + 4\delta$. This clearly implies that $d(z, y) \leq 100\delta + 4\delta + 100\delta = 200\delta$. This however clearly contradicts Lemma 4.9 since z can be arbitrarily far from x.

Let $z \in [x, p]$ be such that $d(z, x) = k_1 + 300\delta$. By the choice of k_1 this implies $d(z, uz) \geq 300\delta$.

We will prove that x lies in the $(k_1 + 300\delta)$-neighborhood of any geodesic $[p, up]$ and therefore in the $(k_1 + 300\delta)$-neighborhood of X_U. It suffices to show that z lies in the 8δ-neighborhood of $[p, up]$. Suppose now that z does not lie in the 8δ-neighborhood of $[p, up]$. Choose $y \in [x, ux] \cup [ux, up]$ such that $d(y, z) \leq 8\delta$. If $y \in [x, ux]$ then by the triangle inequality $d(x, uz) \leq 100\delta$ implies $d(z, x) \leq 100\delta$, contrary to the choice of z. Thus $z \in [ux, up]$. Since $d(x, ux) \leq 100\delta$ and $d(z, y) \leq 8\delta$, by the triangle inequality we have $d(z, uz) \leq 100\delta$. Since $d(x, z) = d(x, uz)$, this implies that $d(uz, y) \leq 108\delta$. It now follows from $d(z, y) \leq 8\delta$ that $d(z, uz) \leq 116\delta$, which contradicts our assumptions.

Lemma 4.11. There exists a constant $c(n, \delta) \geq 0$ such that the following holds. Let $G = \langle S | R \rangle$ be as in Lemma 4.10. Let $U \leq G$ be a non-trivial finite subgroup. Then the diameter of $X(U)$ is bounded by $c(n, \delta)$.

Proof. By a theorem of V. Gerasimov and O. Bogopolskii [13] (see also [5]), any finite subgroup of G is conjugate to a subgroup contained in the ball of radius $2\delta + 1$ around 1 in the Cayley graph $X = \Gamma(G, S)$. This implies that for any non-trivial finite subgroup $U \leq G$ there exists a vertex $x \in X$ such that $d(x, uz) \leq 2\delta + 1$ for all $u \in U$.

Let $k_1 = k_1(n, 102\delta + 1, \delta)$ be the constant provided by Lemma 4.9. It is clear that $E(U) = \bigcup_{u \in U_{-1}} E(u, 100\delta) \subset \bigcup_{u \in U_{-1}} E(u, 102\delta + 1)$.

Furthermore $x \in E(U, 102\delta + 1)$ for all non-trivial $u \in U$. It follows that the diameter of $E(U)$ is bounded by $2k_1$. This clearly implies that the diameter of $X(U) = \text{Conv}(E(U))$ is bounded by $2k_1 + 10\delta$.

\[E(U) = \bigcup_{u \in U_{-1}} E(u, 100\delta) \subset \bigcup_{u \in U_{-1}} E(u, 102\delta + 1).\]
Proof. We can clearly assume that \(||y||_\infty \leq 100\delta \) since otherwise \(E(g) = 0 \). Let \(x \in E(g) \), i.e. \(d(x, gx) \leq 100\delta \). Note that by the choice of \(g \) the limit set \(\Lambda C \) consists of two distinct points \(y_1, y_2 \in \partial X \) where
\[y_1 = \lim_{n \to \infty} g^{-n}x \quad \text{and} \quad y_2 = \lim_{n \to \infty} g^n x. \]
Hence \(X_C \) is \(8\delta \)-quasiconvex and \(4\delta \)-Hausdorff close to a geodesic \([y_1, y_2]\).

Choose \(m \) to be the smallest integer such that \(m \geq \frac{100\delta}{c} = \frac{100\delta}{||y||_\infty} \). Note that \(m \leq \frac{100\delta}{c} + 1 \). It clearly follows immediately from the definition of the asymptotic translation length that \(d(y, g^m y) \geq mc \geq 200\delta \) for all \(y \in X \).

Let \(p_x \) be a projection of \(x \) onto \(X_C \). Then \(d(p_x, g^m p_x) > 100\delta \). Since \(X_C \) is \(8\delta \)-quasiconvex, it now follows from Lemma 3.12 that the path \([x, p_x] \cup [p_x, g^m p_x] \cup [g^m p_x, g^n x]\) is a \((1, 100\delta) \)-quasigeodesic. Hence
\[d(x, g^n x) \geq d(x, p_x) + d(p_x, g^m p_x) + d(g^m p_x, g^n x) - 100\delta \geq d(x, p_x) + 100\delta + d(g^m p_x, g^n x) - 100\delta = d(x, p_x) + d(g^m p_x, g^n x) = 2d(x, x_p) \]
and therefore \(d(x, p_x) \leq \frac{1}{2}d(x, g^n x) \). Since by assumption \(d(x, gx) \leq 100\delta \), it follows that \(d(x, g^n x) \leq m100\delta \leq \left(\frac{100\delta}{c} + 1 \right) 100\delta = \frac{10000\delta^2}{c} + 100\delta \). It follows that
\[d(x, p_x) \leq \frac{1}{2}d(x, g^n x) \leq \frac{1}{2} \left(\frac{10000\delta^2}{c} + 100\delta \right) = \frac{5000\delta^2}{c} + 50\delta = k, \]
as required.

The following lemma shows that the situation as in part (1) of Example 4.6 does not occur in our applications to hyperbolic groups.

Lemma 4.9. For any integers \(n, k, \delta \geq 1 \) there exists a constant \(k_1 = k_1(n, k, \delta) \) with the following property. Suppose that \(G = (S|R) \) is an almost torsion-free group with \(\delta \)-hyperbolic Cayley-graph \(X = \Gamma(G, S) \) and such that \(S \) consists of \(n \) elements. Then for any non-trivial element of finite order \(g \in G \) the set \(E(g, k) = \{ x \in X | d(x, gx) \leq k \} \) has diameter at most \(k_1 \) in \(X \).

Proof. Choose an integer \(L = L(\delta) > 0 \) and a number \(\lambda = \lambda(\delta) > 0 \) such that any \(L \)-local geodesic in \(X \) is \((\lambda, \lambda)\)-quasigeodesic. We show that the assertion holds for
\[k_1 = k_1(n, k, \delta) = L + L(2n)^{k+5\delta^2}2^{2L} + 2 = L + L(2n)^{k+5\delta^2+L} + 2. \]
Assume that the statement of Lemma 4.9 fails for \(G \). We will show that then there exists an element \(h \in G \) represented by a geodesic word \(w = w(h) \) of length at least \(L \) such that \(w^n \) is a \(L \)-local geodesic for all integers \(n \geq 0 \) and such that \(h \) commutes with a non-trivial element of finite order \(G \). Such an element \(h \) is clearly of infinite order which yields a contradiction to the assumption that centralizers of non-trivial torsion elements are finite.

Denote \(k_1' = k_1 - 2 \). Let \(g \in G \) be a non-trivial torsion element. By the properties of the word-metric on the Cayley graph of \(X \), it suffices to show that for any two vertices \(x, y \in E(g, k) \) we have \(d(x, y) \leq k_1' \).

Suppose, on the contrary, that there exists vertices \(x, y, z \in X = \Gamma(G, S) \) such that \(d(x, y) \geq k_1' \) and that \(x, y \in E(g, k) \), that is \(d(x, gx) \leq k \) and \(d(y, gy) \leq k \). Choose a geodesic \([x, y]\). For each \(i = 0, 1, \ldots, (2n)^{k+5\delta^2+L} \) define \(p_i \) to be the point of \([x, y]\) such that \(d(x, p_i) = iL \). Note that \(p_i \) is a vertex of \(X \) since \(iL \) is an integer and \(x \in G \). Denote by \(v_i \) the subsegment \([p_i, p_{i+1}]\) of \([x, y]\). Clearly \(v_i \) has length \(L \). We also choose for each \(i = 0, 1, \ldots, (2n)^{k+5\delta^2+L} \) a geodesic path \(v_i = [p_i, gp_i] \). It follows immediately from the fact that geodesic quadrilaterals in \(X \) are \(2\delta \)-thin that \(d(p_i, gp_i) \leq k + 5\delta \) for all \(i \).

Since \(S \) has \(n \) elements, for any integer \(m \geq 0 \) there are at most \((2n)^{m} \) possibilities for the label of an edge-path of length at most \(m \) in \(X \). Since the paths \(w_i \) are of length \(L \) and the paths \(v_i \) are of length at most \(k + 5\delta \) and since there are \(1 + (2n)^{k+5\delta^2+L} \) choices for \(i \) it follows that there exist \(i, j \) with \(0 \leq i < j \leq (2n)^{k+5\delta^2+L} \) such that \(w_i \) has the same label as \(w_j \) and \(v_i \) has the same label as \(v_j \). Let \(w_{(i, j)} \) be the subsegment \([p_i, p_j]\) of \([x, y]\).

Note that the label of \(v_{i, j} \) gives an element \(g' \in G \) conjugate to \(g \). Denote by \(h \) the element of \(G \) represented by the label of \(w_{(i, j)} \). It is clear that \(g'h = hg' \) since we have the quadrilateral with vertices \(p_i, p_j, gp_i, gp_j \) where opposite sides have the same labels corresponding to either \(g' \) or \(h \). Moreover,
Choose a point \(x \in A \). Since \(A \) is \(U \)-invariant, the orbit \(U x \) is contained in \(A \). Hence the collections of limits in \(\partial X \) of sequences from \(A \) contains \(\Lambda U = \Lambda(Ux) \), the limit set of \(U \).

Let \(p \in \Lambda U \) be any point. Consider a geodesic ray \([x, p]\) in \(X \) and choose any \(y \in [x, p] \). Since \(p \) is approximated by elements of \(Ux \) and \(X \) is \(\delta \)-hyperbolic, there exists \(u \in U \) such that \(d(y, y') \leq 2\delta \) for some \(y' \in [x, u x] \). Since \(A \) is \(U \)-invariant, \(u x \in A \). Since \(A \) is \(C \)-quasiconvex, there is \(a \in A \) with \(d(y', a) \leq C \). Hence \(d(y, a) \leq C + 2\delta \). Since \(y \in [x, p] \) was chosen arbitrarily, the geodesic ray \([x, p]\) is contained in the \((C + 2\delta)\)-neighborhood of \(A \).

Let \(p, q \in \Lambda U \) be two distinct points and let \([p, q] \subseteq X \) be a bi-infinite geodesic from \(p \) to \(q \). Let \(y \in [p, q] \) be an arbitrary point. Since both \(p \) and \(q \) are approximated by points of the orbit \(Ux \), there exist \(u_p, u_q \in U \) such that for some point \(y' \in [u_p x, u_q x] \) we have \(d(y, y') \leq 2\delta \). Since \(u_p x, u_q x \in A \) and \(A \) is \(C \)-quasiconvex, there is \(a \in A \) such that \(d(y', a) \leq C \) and hence \(d(y, a) \leq C + 2\delta \). Since \(y \in [p, q] \) was chosen arbitrarily, this implies that \([p, q]\) is contained in the \((C + 2\delta)\)-neighborhood of \(A \). We have already seen that \([x, p]\) and \([x, y]\) are contained in the \((C + 2\delta)\)-neighborhood of \(A \) as well for any \(x \in A \).

Since \(E(U) \subseteq A \) and \(A \) is \(C \)-quasiconvex, this implies that \(Z(U) = \text{Conv}(\Lambda U \cup E(U)) \) is contained in the \((2C + 2\delta)\)-neighborhood of \(A \). (This is true even if \(\Lambda(U) \) is a single point.)

Since \(X \) is \(\delta \)-hyperbolic and \(A \) is \(C \)-quasiconvex, we conclude that \(\text{Conv}(Z(U)) \) is contained in the \((3C + 3\delta)\)-neighborhood of \(A \). Hence \(X(U) = \text{Conv}(Z(U)) \) is contained in the \((3C + 4\delta)\)-neighborhood of \(A \) and so the sets \(A \) and \(X(U) \) are \((3C + 4\delta)\)-Hausdorff close, as required.

In our application to word-hyperbolic groups it turns out that the set \(X(U) \) and \(X_U \) are Hausdorff close. To see that this is not true in general consider the following two situations:

Example 4.6. (1) Consider the action of the infinite dihedral group \(U = D_{\infty} = \langle x, y \mid x^2 = 1, y^2 = 1 \rangle \) on the hyperbolic plane \(\mathbb{H}^2 \) where \(x \) and \(y \) act as reflection in disjoint geodesic lines. It is clear that we get \(\Lambda(U) = \{y_1, y_2\} \) for some \(y_1, y_2 \in \partial \mathbb{H}^2 \) and that \(X_U \) is the geodesic line \([y_1, y_2]\) which is perpendicular to the axes of \(x \) and \(y \). However both \(x \) and \(y \) clearly fix points in arbitrary distance from \(X_U \).

(2) Consider the action of \(U = \mathbb{R} \) on \(\mathbb{H}^2 \) where \(U \) acts by translation along a fixed geodesic line \(L \). We clearly have \(X(U) = L \). However since \(U \) is connected we have that \(X(U) = E(U) = \mathbb{H}^2 \).

(3) Consider the group \(A = \mathbb{Z} \times \mathbb{Z}_2 \) with the generating set \(S = \{a, b\} \) where \(a \) in the generator of \(\mathbb{Z} \) and \(b \) is the generator of \(\mathbb{Z}_2 \). Then the Cayley graph \(X = \Gamma(A, S) \) is 1-hyperbolic. Then for \(U = \{b\} = \mathbb{Z}_2 \) we have \(X_U = \emptyset \) and \(X(U) = E(U) = X \).

We will describe a situation when \(X_U \) and \(X(U) \) are Hausdorff close.

Definition 4.7. For an element \(g \in G \) we define the asymptotic translation length \(\|g\|_\infty \) of \(g \) as

\[
\|g\|_\infty := \lim_{n \to \infty} \frac{\|g^n\|}{n}.
\]

One can show that for any \(x \in X \) we have

\[
\|g\|_\infty = \lim_{n \to \infty} \frac{d(x, g^n x)}{n} \leq \|g\| \leq d(x, g x).
\]

It is clear that \(\Lambda(\langle g \rangle) = \{y_1, y_2\} \) for some distinct \(y_1, y_2 \in \partial X \) if \(\|g\|_\infty > 0 \) (since in this case the orbit map \(\mathbb{Z} \to X, n \mapsto g^n x \) is a quasi-isometric embedding for any \(x \in X \)). We refer the reader to [17] for the background information on asymptotic translation length.

We can now state a criterion which allows one to rule out situations similar to (2) in Example 4.6. For any \(g \in G \) we denote \(E(g) = \{x \in X \mid d(x, g x) \leq 100\delta \} \) and call \(E(g) \) the small displacement set of \(g \).

Lemma 4.8. Suppose that \(\delta > 0 \). Let \(g \in G \) and \(C = \langle g \rangle \subseteq G \) and suppose that \(\|g\|_\infty = c > 0 \). Then \(E(g) \) is contained in the \(k \)-neighborhood of \(X_C \) where \(k = \frac{1000c^2}{\epsilon} + 50\delta \).
Lemma 4.3. Let $U \leq G$ be a non-trivial subgroup. Then $X(U)$ is nonempty.

Proof. We will sketch the argument and leave the details to the reader. If $\delta = 0$ then X is an \mathbb{R}-tree and the statement is obvious since any isometry of X either fixes a point or acts by translation on a line in X (Hence either $E(U)$ is nonempty or AU has at least two points and hence $\text{Conv}(AU)$ is nonempty.

Suppose $\delta > 0$. Let $g \in G$ be an isometry of X such that $||g|| \geq 50\delta$. Let $x \in X$ such that $d(x, gx) \leq ||g|| + \delta$. Thus $d(x, gx) \geq 49\delta$. It is easy to see that the bi-infinite path

$$\sigma = \cdots \cup g^{-2}[x, gx] \cup g^{-1}[x, gx] \cup [x, gx] \cup g[x, gx] \cup g^2[x, gx] \cup \cdots$$

is 49δ-local (4δ)-quasigeodesic. It then follows that σ is a (K, K)-quasigeodesic for some constant $K = K(\delta) > 0$ (see for example Lemma 1.1 in [19]). Hence the sequences $(g^n x)_{n \geq 1}$ and $(g^{-n} x)_{n \geq 1}$ both converge at infinity and are not equivalent. Therefore $A(g)$ consists of two distinct points.

Suppose now $U \leq G$ is a non-trivial subgroup. Choose a non-trivial element $u \in U$. If $||u|| \leq 50\delta$ then obviously $E(U)$ is nonempty. If $||u|| \leq 50\delta$ then AU has at least two distinct points. In any event, $Z(U)$ is clearly nonempty and hence $X(U)$ is nonempty as well.

We shall also need the following simple geometric observation:

Lemma 4.4. Let $U \leq G$ be a non-trivial subgroup and suppose that $\delta > 0$. (Recall that δ is the hyperbolicity constant of X). Then

1. The sets $X(U), X_U, E(U)$ and $Z(U)$ are U-invariant. The set X_U is 8δ-quasiconvex and the set $X(U)$ is connected, closed and 4δ-quasiconvex.

2. Suppose $p \in X, u \in U, u \neq 1$ and let p' be a projection of p on $X(U)$. Then the path $[p, p'] \cup [p', up'] \cup [up', p]$ is $(1, 100\delta)$-quasigeodesic.

3. For any $g \in G$ we have $E(gUg^{-1}) = E(U), A(gUg^{-1}) = gA(U), Z(gUg^{-1}) = gZ(U), X(gUg^{-1}) = gX(U)$ and $X_{Ug^{-1}} = gX_U$.

Proof. It is clear from Definition 4.2 that $X(U), Z(U)$ and X_U are U-invariant, since the limit set $A(U)$ and the small displacement set $E(U)$ are U-invariant by construction. The quasiconvexity estimates follow directly from Lemma 3.9. The set $X(U)$ is connected and closed by construction.

We will now show that (2) holds. Note that $u p' \in X(U)$ since $X(U)$ is U-invariant and $p' \in X_G$. It is obvious that up' is a projection of gu on $X(U)$ and that $d(p, p') = d(up, up')$. Since $X(U)$ is 4δ-quasiconvex, the point p' is at most 4δ-away from a projection p'' of p on $[p', p'']$. Similarly, up' is at most 4δ-away from a projection of gp on $[p', gp']$. Therefore by Lemma 3.12 either part (2) of Lemma 4.4 holds or there are points $x \in [p, p']$ and $y \in u[p, p']$ such that $d(x, p') = d(y, up') > \delta$ and $d(x, y) \leq 100\delta$. The choice of y implies that in fact $y = ux$. Thus $d(x, ux) \leq 100\delta$ and $u \neq 1$. Therefore $x \in E(U)$ and hence $x \in X(U)$. Since $d(p, x) > \delta$, we have

$$d(p, x) = d(p, p') - d(p', x) < d(p, p') + \delta,$$

which contradicts our assumption that p' is a projection of p on $X(U)$.

Part (3) follows directly from the definitions.

Lemma 4.5. Let $U \leq G$ be a non-trivial subgroup and assume that $\delta > 0$. Suppose $A \subseteq X$ is a nonempty C-quasiconvex and U-invariant set such that

1. the set A is contained in the C-neighborhood of $X(U)$; and

2. $E(U) \subseteq A$.

Then $X(U)$ and A are $(3C + 4\delta)$-Hausdorff close.

Proof. We need to show that $X(U)$ is contained in the $(3C + 4\delta)$-neighborhood of A.

By condition (2) we know that $E(U) \subseteq A$. If $AU = \emptyset$, then $Z(U) = E(U), X(U) = \text{Conv}(E(U))$ and the conclusion of the lemma is obvious. Assume now that $AU \neq \emptyset$.

Lemma 3.12. Let (X,d) be a δ-hyperbolic geodesic metric space (with $\delta > 0$) and let $[x_p, x_q]$ be a geodesic segment in X. Let $p, q \in X$ be such that x_p is a projection of p on $[x_p, x_q]$ and that x_q is a projection of q on $[x_p, x_q]$.

Then:

1. If $d(x_p, x_q) \geq 100\delta$ then $[p, x_p] \cup [x_p, x_q] \cup [x_q, q]$ is a $(1, 30\delta)$-quasigeodesic in X.
2. Either the path $[p, x_p] \cup [x_p, x_q] \cup [x_q, q]$ is a $(1, 30\delta)$-quasigeodesic or there are points $x \in [x_p, p], y \in [x_q, q]$ such that $d(x_p, x) = d(x_q, y)$ and $d(x, y) \leq 100\delta$.

Proof. Since the geodesic $[x_p, x_q]$ is δ-quasiconvex, part (1) follows easily from Lemma 3.11. Part (1) immediately implies part (2). \qed

4. Limit sets and convex hulls

Till the end of this section, unless specified otherwise, we assume that (X,d) is a strongly geodesic δ-hyperbolic G-space. In this section we associate to any non-trivial subgroup $U \leq G$ a set X_U which roughly corresponds to the minimal invariant subtree if X is a tree and a set $X(U)$ which corresponds to the tree T_U of $[41]$.

Let $x \in X$. We define the limit set of U, denoted $\Lambda(U)$, to be the collection of all $p \in \partial X$ such that $p = \lim_{n \to \infty} u_n x$ for some sequence $u_n \in U$. If $y \in X$ is a different point then the orbits $U x$ and $U y$ are $d(x, y)$-Hausdorff close. Therefore the definition of $\Lambda(U)$ does not depend on the choice of $x \in X$. We can now define the analogue of the minimal U-invariant subtree:

Definition 4.1. Let $U \leq G$ be a non-trivial subgroup such that $\Lambda(U)$ has at least two distinct points. Then we define the weak convex hull X_U of U as

$$X_U := \text{Conv}(\Lambda(U)).$$

Note that the assumption on the limit set is also necessary in the case when X is a real tree. Indeed a group U acting on a real tree by isometries either contains a hyperbolic element and has two distinct points in the limit set or the group acts with a fixed point in which case the minimal U-invariant subtree is not necessarily unique.

Traditionally the weak convex hull X_U is termed the “convex hull” of U (see for example [29, 40]). It is a very useful and natural geometric object with many interesting applications.

However, as in [41], it turns out that X_U is not the right object for our purposes and we need to consider a bigger U-invariant set. Namely, if U acts on a simplicial tree T, it is necessary (see [41]) to study the set that contains not only the minimal U-invariant subtree but also the points that are almost fixed under the action of some non-trivial element of U. Following this analogy, we introduce the following notions:

Definition 4.2. Let $U \leq G$ be a non-trivial subgroup.

We define the small displacement set of U, denoted $E(U)$, as

$$E(U) := \{ x \in X | d(x, g x) \leq 100\delta \mbox{ for some } g \in G, g \neq 1 \}$$

We put $Z(U) := \text{Conv}(\Lambda(U) \cup E(U))$. We now define

$$X(U) := \text{Conv}(Z(U))$$

and call $X(U)$ the convex hull of U.

Recall that if g is an isometry of a metric space (X,d), the translation length $\|g\|$ of g is defined as

$$\|g\| = \inf\{ d(x, g x) | x \in X \}.$$

An important observation is the following simple lemma:
(1) Let Σ be a geodesic quadrilateral in X with sides $[a, b], [b, c], [c, d]$ and $[a, d]$. Consider also a geodesic $[b, d]$. Since the triangles $[a, d] \cup [a, b] \cup [b, d]$ and $[b, c] \cup [c, d] \cup [b, d]$ are δ-thin, the segment $[a, d]$ is contained in the 2δ-neighborhood of $[a, b] \cup [b, c] \cup [c, d]$. Thus Σ is 2δ-thin, as required.

Now let x, y be two points in Σ. It is clear that any segment $[p, q]$ is the side of a triangle or a quadrilateral such that all other sides lie in Σ. It follows that $[p, q]$ lies in the 2δ-neighborhood of Σ, in the case of a triangle from the definition of hyperbolicity and in the case of a quadrilateral from the first assertion.

(2) Let $\Delta = [a, b] \cup [b, c] \cup [a, c]$ be a geodesic triangle in X where $a, b, c \in X \cup \partial X$.

If $a, b, c \in X$, the statement is obvious. Thus we only need to consider ideal triangles, that is when at least one vertex of Δ is in ∂X. We will consider the most complicated case, when all three vertices a, b, c belong to ∂X (the other cases are treated similarly).

Thus suppose $a, b, c \in \partial X$ and let $x \in [a, b]$. Since $[c, a]$ and $[b, a]$ are asymptotic, there exist a point $p \in [a, b]$ such that the ray $[p, a] \subseteq [a, b]$ is contained in the 2δ-neighborhood of $[a, c]$. Similar statements hold by symmetry for other vertices of Δ. Choose a point $p' \in [x, a] \subseteq [a, b]$ such that $d(p', x) > 10\delta$ and $d(p', p'') < 2\delta$ for some $p'' \in [a, c]$. Similarly, choose a point $q' \in [x, b] \subseteq [a, b]$, such that $d(x, q') > 10\delta$ and $d(q', q'') < 2\delta$ for some $q'' \in [c, a]$. Finally, choose a point $z' \in [b, c] \subseteq [a, c]$ such that there is a point $z'' \in [q', c] \subseteq [b, c]$ with $d(z', z'') \leq 2\delta$ and such that $d(z', x) > 10\delta$.

Since the triangle $[p', q'] \cup [p'', p'] \cup [b, z'']$ is δ-thin and $d(p', x) > 10\delta$ and $d(p', p'') \leq 2\delta$, there is a point $x'' \in [p'', q']$ such that $d(x, x'') \leq \delta$. Since the triangle $[p'', q'] \cup [p'', z'] \cup [z', q']$ is δ-thin, there is a point $x''' \in [a, c] \cup [z', q']$ such that $d(x, x''') \leq \delta$. If $x''' \in [a, c]$ then $d(x, x''') \leq 2\delta$, as required. Suppose now $x''' \in [z', q']$. Recall that by the choice of z', q' we have $d(x, x''') > 10\delta$, $d(x, x''') > 8\delta$, $d(x, z') > 8\delta$ and $d(z', x''') \leq 2\delta$.

Since the quadrilateral $[z', q'] \cup [z', z''] \cup [q', q''] \cup [z'', q'']$ is δ-thin, this implies that there is a point $x'''' \in [z'', q''] \subseteq [c, b]$ such that $d(x, x'') \leq 2\delta$. Hence $x'''' \in [c, b]$ and $d(x, x'') \leq 4\delta$, as required.

We have established that the ideal triangle Δ is 4δ-thin, and so all triangles with vertices in $X \cup \partial X$ are 4δ-thin. This immediately implies that such triangles are 4δ-quasiconvex and part (2) is verified.

Part (3) follows from (2) similar to how (1) follows from the definition of hyperbolicity. Part (4) is a direct consequence of (1). Similarly, part (5) is a direct consequence of (3).

Definition 3.10 (Projection). Let Λ be a subset of a δ-hyperbolic metric space X and let $p \in X$. We say that a point $a_p \in A$ is a projection of p on A if for any $a' \in A$ we have $d(p, a_p) \leq d(p, a') + \delta$.

If $\delta > 0$ then a projection always exists although it may not be unique. However, it is easy to see that in a hyperbolic space a projection on a quasiconvex set is "almost unique".

Lemma 3.11. Let A be an ϵ-quasiconvex set in a δ-hyperbolic space X. Let $p \in X$ and $a_p \in A$ and $a'_p \in A$ be projections of p on A. Then

1. $d(a_p, a'_p) \leq 2\epsilon + 8\delta$.
2. If $a \in A$, $x \in [a, a_p]$ such that x lies in the R-neighborhood of $[a, p]$ then
 \[d(a_p, x) \leq 2\delta + \epsilon + 2R. \]

Proof. (1) easily follows from (2) by considering the δ-thin triangle $[p, a_p], [a_p, a'_p], [p, a'_p]$ and using $R = \delta$.

We will now prove (2). Suppose (2) fails. Choose a point x on $[a_p, p]$ such that $d(a_p, x) > 2\delta + \epsilon + 2R$ and $d(x, y) \leq R$ for some $y \in [a_p, p]$. Then $d(p, y) > 2\delta + \epsilon + R$ and $d(p, y) = d(p, a_p) - d(a_p, y) < d(p, a_p) - \epsilon - 2\delta - R$. Since A is ϵ-quasiconvex, there is a point $a' \in A$ such that $d(x, a') \leq \epsilon$. Hence

\[d(p, a') \leq d(p, y) + d(y, x) + d(x, a') \leq d(p, y) + R + \epsilon < d(p, a_p) - (\epsilon + 2\delta + R) + R + \epsilon \leq d(p, a_p) - 2\delta \]

which contradicts the assumption that a_p is a projection of p on A. □

The following lemma is a simple but important consequence of Lemma 3.11.
Recall that a metric space is called proper if all closed metric balls are compact. It is well known that proper hyperbolic metric spaces \([18, 25, 1]\) and complete \(\text{CAT}(-1)\)-spaces \([3, 14]\) as well as \(\mathbb{R}\)-trees are strongly geodesic. Moreover, for a proper hyperbolic space \(X\) both \(\partial X\) and \(X \cup \partial X\) are compact.

Let \((X, d)\) be a strongly geodesic \(\delta\)-hyperbolic space. Let \(p, q \in \partial X\) be two distinct points. We will say that a biinfinite geodesic \(\gamma : (-\infty, \infty) \rightarrow X\) joins \(p\) to \(q\) if \(\lim_{n \rightarrow \infty} \gamma(n) = q\) and \(\lim_{n \rightarrow -\infty} \gamma(-n) = p\). In this case we will often denote \(\gamma\) by \([p, q]\). Similarly, a geodesic ray \(\gamma\) is said to join the point \(x = \gamma(0)\) with \(p = [\gamma]\) \(\in \partial X\). It follows from the definitions that in a strongly geodesic hyperbolic space \(X\) any two distinct points in \(X \cup \partial X\) can be joined by a geodesic in \(X\).

The following notion plays an important role in the theory of hyperbolic spaces.

Definition 3.6 (Quasigeodesics). Let \((X, d)\) be a metric space. A path \(\sigma : I \rightarrow X\) (where \(I\) is an interval in the real line) is called a \((\lambda, \epsilon)\)-quasigeodesic if \(\sigma\) is parameterized by the arc-length and for any \(s_1, s_2 \in I\) we have

\[
|s_1 - s_2| \leq \lambda d(\sigma(s_1), \sigma(s_2)) + \epsilon
\]

That is to say, for any points \(x, y\) on \(\sigma\) we have \(d_\sigma(x, y) \leq \lambda d(x, y) + \epsilon\), where \(d_\sigma(x, y)\) is the length of the \(\sigma\)-segment between \(x\) and \(y\).

A naturally parameterized path \(\sigma\) in \(X\) is called an \(N\)-local \((\lambda, \epsilon)\)-quasigeodesic if every subsegment of \(\sigma\) of length \(N\) is a \((\lambda, \epsilon)\)-quasigeodesic.

It is well-known that in hyperbolic spaces local quasigeodesics are global quasigeodesics, provided the local parameter \(N\) is big enough.

Lemma 3.7. \([18, 25, 1]\) For any \(C > 0\) and \(\delta \geq 0\) there is \(K = K(C, \delta) > 0\) with the following property. Let \(\alpha\) be a \(K\)-local \((C, C)\)-quasigeodesic in a \(\delta\)-hyperbolic metric space \(X\). Then \(\alpha\) is a \((K, K)\)-quasigeodesic.

Definition 3.8 (Quasiconvexity). A subset \(A\) of a geodesic metric space \((X, d)\) is said to be \(\epsilon\)-quasiconvex in \(X\) (where \(\epsilon \geq 0\)) if any geodesic segment joining two points of \(A\) is contained in the \(\epsilon\)-neighborhood of \(A\). A subset \(A \subseteq X\) is called quasiconvex if it is \(\epsilon\)-quasiconvex for some \(\epsilon \geq 0\).

Let \(X\) be a strongly geodesic hyperbolic metric space and let \(A \subseteq X \cup \partial X\) be a nonempty subset. If \(A\) has just one element, we put Conv\((A)\) = \(A\). If \(A\) contains at least two elements we define Conv\((A)\) to be the union of all geodesics joining distinct points of \(A\). This set Conv\((A)\) is termed the convex hull of \(A\) in \(X\).

We shall need the following simple lemma.

Lemma 3.9. Let \((X, d)\) be a strongly geodesic \(\delta\)-hyperbolic metric space. Then:

1. Any geodesic quadrilateral with vertices in \(X\) is \(2\delta\)-thin (meaning that each side is contained in the \(2\delta\)-neighborhood of the union of the other sides) and \(2\delta\)-quasiconvex.
2. Any geodesic triangle in \(X\) with vertices in \(X \cup \partial X\) is \(4\delta\)-thin and \(4\delta\)-quasiconvex.
3. Any geodesic quadrilateral in \(X\) with vertices in \(X \cup \partial X\) is \(8\delta\)-thin and \(8\delta\)-quasiconvex.
4. For any subset \(A \subseteq X\) the convex hull Conv\((A)\) is connected and \(2\delta\)-quasiconvex.
5. For any subset \(A \subseteq X \cup \partial X\) containing at least one point of \(X\) the convex hull Conv\((A)\) is \(8\delta\)-quasiconvex.

Proof. This lemma is a standard hyperbolic exercise of the type that will be often left to the reader later on in this paper. We will present a complete proof in this instance for demonstration purposes.
of X converges at infinity if
\[
\lim_{n,m \to \infty} \inf (x_n, x_m)_x = \infty.
\]
This definition is easily seen to be independent on the choice of $x \in X$. Two sequences $(x_n), (y_n)$ converging at infinity are said to be equivalent, denoted $(x_n) \sim (y_n)$, if
\[
\lim_{n,m \to \infty} (x_n, y_m)_x = \infty.
\]
Once again, the notion of equivalence does not depend on the choice of a base-point $x \in X$.

Definition 3.3 (Sequential Boundary). Let (X, d) be a δ-hyperbolic space. We define the sequential boundary $\partial^s X$ as the set of equivalence classes of sequences converging at infinity.

Let $x \in X$ be a base-point. Then there is a map $j_x : \partial_x X \to \partial^s X$ defined as $j([\gamma]) := \{[\gamma(n)]_{n=1}^{\infty}\}$. In good situations this map is a bijection for any $x \in X$.

In the remainder of this article we will require the hyperbolic spaces not only to be geodesic but to be strongly geodesic. This ensures that not only points in X but also points "at infinity" can be connected by geodesics with points of X and other points "at infinity" and guarantees that sequential and geodesic boundaries of X coincide.

Definition 3.4 (Strongly geodesic). We say that a geodesic metric space (X, d) is strongly geodesic if the following two conditions are satisfied:

1. Let $\gamma : [0, \infty) \to X$ be a geodesic ray in X and let $y \in X$. Then there exists a geodesic ray $\gamma' : [0, \infty) \to X$ with $\gamma'(0) = y$ such that γ and γ' are asymptotic.
2. Let $\gamma_1 : [0, \infty) \to X$ and $\gamma_2 : [0, \infty) \to X$ be geodesic rays such that $\gamma_1(0) = \gamma_2(0)$ and such that γ_1 and γ_2 are not asymptotic. Then there exists a biinfinite geodesic $\gamma : (-\infty, \infty) \to X$ such that γ is Hausdorff close to $\gamma_1 \cup \gamma_2$.
3. For any $x \in X$ and any sequence (x_n) converging at infinity there exists a geodesic ray $\gamma : [0, \infty) \to X$ with $\gamma(0) = x$ and such that the sequences $(\gamma(n))_{n \geq 1}$ and (x_n) are equivalent.

The following straightforward proposition summarizes some good properties of strongly geodesic hyperbolic spaces.

Proposition 3.5. Let (X, d) be a strongly geodesic δ-hyperbolic metric space. Then:

1. For any $x \in X$ the maps $j_x : \partial_x X \to \partial^s X$ and $i_x : \partial^s X \to \partial^r X$ are bijections.
2. For any $x \in X$ the maps $j_x : \partial_x X \to \partial^s X$, $j_y : \partial_y X \to \partial^s X$ induce the same topology on $\partial^s X$.
3. For any $x \in X$ the maps $j_x : \partial_x X \to \partial X$, $j_y : \partial_y X \to \partial X$ induce the same topology on ∂X.

Because of Proposition 3.5 for a strongly geodesic hyperbolic space (X, d) we can identify both the relative geodesic boundaries $\partial_x X$ and the sequential boundary $\partial^s X$ with the full geodesic boundary ∂X, which inherits a canonical topology. Moreover, $X \cup \partial X$ also has a natural topological structure in this case. For points of X we use the original topology of (X, d). After choosing a base-point $x \in X$ for an arbitrary point $p \in \partial X$ we define the basis of neighborhoods of p in $X \cup \partial X$ to be the collection $\{U_x(p, r) \mid r > 0\}$ where

\[
U_x(p, r) = U_x(p, r) \cup \{y \in X \mid \text{for some geodesic ray } \gamma, \text{ with } \gamma(0) = x, [\gamma] = p, \text{ we have } \lim_{t \to \infty} \inf (y, \gamma(t))_x \geq r\}.
\]

It is easy to see that for a strongly geodesic hyperbolic space (X, d) the topology on $X \cup \partial X$ does not depend on the choice of a base-point $x \in X$. Moreover, if $p = [\gamma] \in X$ and $x_n \in X$ is a sequence of points in X, then $\lim_{n \to \infty} x_n = p$ in $X \cup \partial X$ if and only if the sequences (x_n) and $(\gamma(n))_{n \geq 1}$ are equivalent.
3. Hyperbolic metric spaces

We will give only a quick overview of the main definitions related to Gromov-hyperbolic spaces. For the detailed background information the reader is referred to [24], [18], [23], [1], [16], [9].

A geodesic segment in a metric space \((X, d)\) is an isometric embedding \(\gamma : [0, s] \rightarrow X\), where \([0, s] \subseteq \mathbb{R}\). Similarly, a geodesic ray and a biinfinite geodesic are defined as isometric embeddings \(\gamma : [0, \infty) \rightarrow X\) and \(\gamma : (-\infty, \infty) \rightarrow X\) accordingly. A metric space \((X, d)\) is said to be geodesic if any two points in \(X\) can be joined by a geodesic segment. We will often denote a geodesic segment connecting \(a \in X\) to \(b \in X\) by \([a, b]\) and identify this geodesic segment with its image in \(X\).

Two sets \(A, B \subseteq X\) are said to be \(K\)-Hausdorff close if \(A\) is contained in the \(K\)-neighborhood of \(B\) and \(B\) is contained in the \(K\)-neighborhood of \(A\). If \(A, B \subseteq X\) are \(K\)-Hausdorff close for some \(K \geq 0\), they are said to be Hausdorff close. Two paths \(\gamma : I \rightarrow X\) and \(\gamma' : J \rightarrow X\) are said to be \(K\)-Hausdorff close (where \(I, J\) are sub-intervals of the real line) if their images \(\gamma(I)\) and \(\gamma'(J)\) are \(K\)-Hausdorff close. Similarly, \(\gamma, \gamma'\) are said to be Hausdorff-close if they are \(K\)-Hausdorff close for some \(K \geq 0\).

Two geodesic rays \(\gamma : [0, \infty) \rightarrow X\) and \(\gamma' : [0, \infty) \rightarrow X\) are called asymptotic if there is \(C \geq 0\) such that for any \(t \geq 0\) we have \(d(\gamma(t), \gamma'(t)) \leq C\). It is easy to see that \(\gamma\) and \(\gamma'\) are asymptotic if and only if they are Hausdorff close.

We recall the definition of a \(\delta\)-hyperbolic metric space.

Definition 3.1 (Hyperbolic space). A geodesic metric space \((X, d)\) is said to be \(\delta\)-hyperbolic if for any geodesic triangle in \(X\) with geodesic sides \(\alpha = [x, y], \beta = [x, z], \gamma = [y, z]\) and vertices \(x, y, z \in X\) each side of the triangle is contained in the \(\delta\)-neighborhood of the union of the other two sides. That is for any \(p \in \alpha\) there is \(q \in \beta \cup \gamma\) such that \(d(p, q) \leq \delta\). A geodesic metric space is called hyperbolic if it is \(\delta\)-hyperbolic for some \(\delta \geq 0\).

If \((X, d)\) is a metric space and \(x, y, z \in X\), one defines the Gromov product \((y, z)_x\) as
\[
(y, z)_x := \frac{1}{2}(d(y, x) + d(z, x) - d(y, z)).
\]

If \((X, d)\) is a \(\delta\)-hyperbolic space then the Gromov product measures for how long two geodesics stay close together. Namely, the initial segments of length \((y, z)_x\) of any two geodesics \([x, y]\) and \([x, z]\) in \(X\) are \(2\delta\)-Hausdorff close.

One can attach to a hyperbolic space \(X\) a ”space at infinity”, called the boundary of \(X\). The boundary is usually defined as a set of equivalence classes of geodesic rays originating at a base-point \(x \in X\). Two geodesic rays \(\gamma, \gamma'\) (not necessarily starting at the same point) are said to be equivalent, denoted \(\gamma \sim \gamma'\), if they are asymptotic. An equivalence class of \(\gamma\) is denoted \([\gamma]\).

Definition 3.2 (Geodesic Boundary). Let \((X, d)\) be a \(\delta\)-hyperbolic geodesic metric space and let \(x \in X\) be a base-point of \(X\). One then defines the boundary of \(X\) relative \(x\), denoted \(\partial_x X\), as the set of equivalence classes of geodesic rays originating at \(x\). Similarly the boundary \(\partial X\) of \(X\) is defined as the set of equivalence classes of geodesic rays in \(X\). For any \(x \in X\) there is an obvious map \(i_x : \partial_x X \rightarrow \partial X\) which sends \([\gamma]\) to \([\gamma]\) for any geodesic ray \(\gamma\) starting at \(x\).

The relative boundary \(\partial_x X\) is topologized by saying that two points \([\gamma], [\gamma'] \in \partial_x X\) (where \(\gamma, \gamma'\) are geodesic rays starting at \(x\)) are close if for a large \(T > 0\) the segments \(\gamma([0, T])\) and \(\gamma'([0, T])\) are \(2\delta\)-Hausdorff close. More precisely, for each \(p \in \partial_x X\) we set the basis of neighborhoods of \(p\) in \(\partial_x X\) to be the collection \(\{V_x(p, r) | r > 0\}\) where
\[
V_x(p, r) = \{q \in \partial_x X\} \text{ for some geodesic rays } \gamma_p, \gamma_q \text{ with } \gamma_p(0) = \gamma_q(0) = x, \gamma_p = p, \gamma_q = q,
\]
such that the geodesic segments \(\gamma_p([0, r]), \gamma_q([0, r])\) are \(2\delta\) - Hausdorff close.

An alternative and more general notion of boundary can be given in terms of sequences of points of \(X\). If \((X, d)\) is a \(\delta\)-hyperbolic space and \(x \in X\) is a base-point, we say that a sequence \((x_n)_{n=1}^{\infty}\) of points
By analogy with the Kurosh subgroup theorem we will sometimes refer to the subgroups \(U_i \) as **elliptic subgroups** of \(M \). This is justified since in most applications the subgroups \(U_i \) are generated by sets of elements with short translation length. We will also refer to \(H \) as the **hyperbolic component** of \(M \). We have the following notion of equivalence for \(G \)-tuples which generalizes the classical Nielsen equivalence.

Definition 2.2 (Equivalence of \(G \)-tuples). We will say that two \(G \)-tuples \(M = (U_1, \ldots, U_n; H) \) and \(M' = (U'_1, \ldots, U'_n; H') \) are equivalent if \(H = (h_1, \ldots, h_m) \) and \(H' = (h'_1, \ldots, h'_m) \) and \(M' \) can be obtained from \(M \) by a chain of moves of the following type:

1. For some \(1 \leq j \leq n \) replace \(U_j \) by \(gU_jg^{-1} \) where
 \[g \in \langle \{h_1, \ldots, h_m\} \cup U_1 \cup \ldots \cup U_{j-1} \cup U_{j+1} \cup \ldots \cup U_n \rangle. \]
2. For some \(1 \leq i \leq n \) replace \(h_i \) by \(h'_i = g_1 h_i g_2 \) where
 \[g_1, g_2 \in \langle \{h_1, \ldots, h_{i-1}, h_{i+1}, \ldots, h_m\} \cup U_1 \cup \ldots \cup U_n \rangle. \]

Definition 2.3 (\(G \)-space). Let \(G \) be a group acting on a metric space \((X, d)\) by isometries. In this case we will term \((X, d)\) together with this action a **\(G \)-space**.

We can now formulate the main technical result of this paper:

Theorem 2.4. For any integer \(k \geq 1 \) there is a constant \(K = K(k) \) with the following property.

Suppose \((X, d)\) is a \(\delta \)-hyperbolic strongly geodesic \(G \)-space. Let \(M = (U_1, \ldots, U_n; H) \) be a \(G \)-tuple where \(H = (h_1, \ldots, h_m) \), \(n + m \leq k \) and

\[U = \langle \mathcal{M} \rangle = \langle \{h_1, \ldots, h_m\} \cup \bigcup_{i=1}^n U_i \rangle \leq G. \]

Then either \(U = U_1 \ast \ldots \ast U_n \ast F(H) \) or after replacing \(M \) by an equivalent \(G \)-tuple \(M' = (U'_1, \ldots, U'_n; H') \) with \(H' = (h'_1, \ldots, h'_m) \) one of the following holds:

1. \(d(X(U'_i), X(U'_j)) < \delta K \) for some \(1 \leq i < j \leq n \).
2. \(d(X(U'_i), h_jX(U'_i)) < \delta K \) for some \(i \in \{1, \ldots, n\} \) and \(j \in \{1, \ldots, m\} \).
3. There exists a \(x \in X \) such that \(d(x, h_j x) < \delta K \) for some \(j \in \{1, \ldots, m\} \).

The notion of "strongly geodesic" hyperbolic space (see Definition 3.4) in the above theorem is a technical condition which insures that all possible definitions of the boundary of \(X \) coincide and that any two points in \(X \cup \partial X \) can be connected by a geodesic. In particular, proper hyperbolic spaces, \(\mathbb{R} \)-trees and complete \(CAT(-1) \)-spaces are strongly geodesic. See also Remark 9.2.

Theorem 2.4 is proved in three steps. We first prove it for the case when \(m = 0 \), i.e. that \(H = (\ast) \) is the empty tuple. Here the proof of Theorem 2.4 reduces to an elaborate version of the ping-pong argument. Then we prove it for the case \(M = (U_1; H) \). Here we substantially use techniques and ideas from our previous paper [30] where the "elliptic" subgroup \(U_1 \) was trivial. Finally we combine these two results to handle the general case.

Theorem 2.4 is used to obtain all of our applications. Basically we use it as a "generator transfer" trick to analyze a freely indecomposable subgroup generated by a finite set \(Y = \{y_1, \ldots, y_m\} \) with \(m \) elements. First we start with a \(G \)-tuple \(M_0 = (; H_Y) \) where \(H_Y = (y_1, \ldots, y_m) \). We then construct a sequence of \(G \)-tuples \(M_1, M_2, \ldots \) by repeatedly applying Theorem 2.4 in order to either "drag" elements of the "hyperbolic" component of \(M_i \) into the "elliptic" components of our \(G \)-tuples or to join to elliptic subgroups to one new elliptic subgroup. A simple observation shows that the length of the sequence \(M_1, M_2, \ldots \) is bounded by \(2m - 1 \). The desired results are then obtained by analyzing the terminal member of this sequence.
fibering over a circle all finitely generated subgroups of the fundamental group are always topologically tame.

Recall that for $M \geq 0$ an action of a group G on an \mathbb{R}-tree X is said to be M-acylindrical if the length of any segment which is fixed point-wise by a non-trivial element of G is at most M. Similarly, a graph-of-groups splitting of a group G is said to be M-acylindrical if the action of G on the corresponding Bass-Serre tree is M-acylindrical. Z.Sela [35] established acylindrical accessibility for finitely generated groups. Namely, given a non-cyclic freely indecomposable finitely generated group G and a number $M \geq 0$ there is a global bound $C(G, M)$ on the number of edges in an M-acylindrical minimal graph-of-groups splitting of G. Later T.Delzant [22] gave an explicit formula for $C(G, M)$ for finitely presentable groups (in terms of the presentation) and R.Weidmann [41] showed that $C(G, M)$ can be taken to be $2M(k-1)$ if G is a group which can be generated by k elements. Ayclicindrical group actions play an important role in the theory of JSJ-decomposition and the Combination Theorem for hyperbolic groups (see for example [35, 36, 10, 11, 27]).

We obtain the following statement which can be regarded as an “acylindrical accessibility” result for finitely generated groups acting on real trees. Indeed, our theorem says that there is a bound on the size of a “fundamental domain” for a minimal M-acylindrical isometric action of a k-generated group on an \mathbb{R}-tree:

Theorem 1.8. Let G be a freely indecomposable finitely generated group acting by isometries on an \mathbb{R}-tree X. Suppose that G is not infinite cyclic and that the action is M-acylindrical (where $M \geq 0$). Let $\epsilon > 0$ be an arbitrary real number. Then any finite generating set Y of G with k elements is Nielsen-equivalent to a set S such that for some $x \in X$ we have

$$\max\{d(x, sx) | s \in S\} \leq 2M(k-1) + \epsilon.$$

In particular if the action of G is 0-acylindrical, that is arc stabilizers are trivial, then a finite generating set of G can be made by Nielsen transformations to have arbitrarily small translation length. An interesting feature of the above result is that we make no assumptions on the stability of the action of G or on the properties of tripod stabilizers. Not surprisingly our methods let us recover the same bound $C(G, M) = 2M(k-1)$ on the complexity of acylindrical accessibility splittings as the one given in [41].

2. The main technical result

Our main tool is a technical result motivated by the Kurosh subgroup theorem (see [31, 4]) for free products, which states that a subgroup is the free product of a free group and subgroups that are conjugate to subgroups of the factors. The main result of [41] generalizes this theorem to groups acting on simplicial trees. In the present paper we provide the hyperbolic “quasification” of this fact.

First, we equip every non-trivial subgroup $U \leq Isom(X)$ with a U-invariant quasiconvex subset $X(U)$ (see Section 4 for the precise definition). The set $X(U)$ generalizes the definition of the subtree T_U in the simplicial tree action case [41] (in that situation T_U contains the minimal U-invariant subtree as well the edges of the ambient tree which are moved a “small distance” by some nontrivial element of U). For an infinite subgroup U of an almost torsion-free word-hyperbolic group G the set $X(U)$ turns out to be Hausdorff-close to the convex hull of the limit set of U in ∂G.

We generalize and push further the Nielsen methods for groups acting on hyperbolic spaces introduced in [30]. The objects which correspond to the tuples of elements of G are the G-tuples:

Definition 2.1 (G-tuple). Let G be a group.

Let $n \geq 0$, $m \geq 0$ be integers such that $m + n > 0$. We will say that a tuple $M = (U_1, \ldots , U_n ; H)$ is a G-tuple if U_i is a non-trivial subgroup of G for $i \in \{1, \ldots , n\}$ and $H = (h_1, \ldots , h_m) \in G^m$ is a m-tuple of elements of G. We will denote $\overline{M} = U_1 \cup \cdots \cup U_n \cup \{ h_1, \ldots , h_m \}$ and call \overline{M} the underlying set of M. Note that \overline{M} is nonempty since $m + n > 0$.
Theorem 1.6. There is an algorithm A with the following property.

Suppose $G = \langle x_1, \ldots, x_l \mid r_1, \ldots, r_m \rangle$ is a finite group presentation which is known to define an one-ended almost torsion-free word-hyperbolic group where all $(l-1)$-generated subgroups are quasiconvex (e.g. G is locally quasiconvex). Then A produces the smallest number k such that G can be generated by k elements.

Proof. First we set $S = \{x_1, \ldots, x_l\}$ and apply the algorithm of P.Papasoglu [33] to compute the hyperbolicity constant δ of the Cayley graph $\Gamma(G, S)$ with respect to the word metric d_5. Once δ is known, we can find the automatic structure with unique representatives on G with the automatic language L consisting of S-geodesic words [23]. Obviously G can be generated by l elements. Since by assumption G is one-ended, it cannot be 1-generated. We now have to decide for each $k = 2, \ldots, l - 1$ if G can be generated by k elements. For a given k, $2 \leq k \leq l - 1$ we compute $C_1 = C(G, S, k, k - 1)$, the constant provided by Theorem 1.3. By Theorem 1.3 any k-generated subgroup of G is conjugate to a subgroup generated by a k-element subset of the ball B of radius C_1 in $\Gamma(G, S)$ around $1 \in G$. The number of such k-element subsets of B is at most $(l^k)^k = \ell^{k^2} \leq \ell^2$. Since $k \leq l - 1$, by our assumption on G each k-element subset Y of B generates a quasiconvex subgroup of G which is therefore rational with respect to the automatic language L. Therefore by the result of I.Kapovich [26] for each Y we can recover both the quasiconvexity constant of the subgroup $H = \langle Y \rangle$ generated by Y and the regular language L_H which is the preimage of H in L. Now to see whether $H = L$ it suffices to check if the regular languages L and L_H coincide.

It is worth noting that the rank problem is undecidable for torsion-free word hyperbolic groups in general, as shown by G.Baumslag, C.F.Miller and H.Short [12]. Not surprisingly, their proof utilizes the Rips construction and thereby implicitly the existence of two-generated non-quasiconvex subgroups.

Our main technical tools involve generalizing the Nielsen method for groups acting on simplicial trees as developed by the R.Weidmann in [41] to groups acting on δ-hyperbolic spaces. The present paper substantially relies on the authors’ previous paper [30], where the basic ideas are developed and fleshed out in detail. In order to obtain the above results, we first prove a technical statement related to group actions on δ-hyperbolic spaces. This statement is a close analogue of the main result of [41]. This statement turns out to also have applications to group actions on real and simplicial trees as well as to 3-manifold groups.

Theorem 1.7.

1. Let M be a compact hyperbolic 3-manifold with nonempty convex boundary and let $G = \pi_1(M)$. Then for any $k \geq 2$ the group G has only finitely many conjugacy classes of non-elementary freely indecomposable k-generated subgroups.

2. Let M be a closed hyperbolic 3-manifold which fibers over a circle and let $G = \pi_1(M)$. Suppose all finitely generated subgroups of G are topologically tame.

Then for any $k \geq 2$ the group G has only finitely many conjugacy classes of non-elementary freely indecomposable k-generated subgroups of infinite index in G.

Part (1) immediately follows from Theorem 1.4 since G is torsion-free and locally quasiconvex [38]. In part (2) G has many non-quasiconvex subgroups (e.g. the group of the fiber surface) but we are still able to use our main technical result to obtain the desired conclusion. Note that the “infinite index” assumption is essential and cannot be dropped. Indeed, if H is a fiber group in M then G has the HNN-presentation $G = \langle H, t \mid t^{-1}ht = \phi(h), \text{for all } h \in H \rangle$, where ϕ is some automorphism of H. Let m be the rank of H. For each $n > 1$ the subgroups $H_n = \langle H, t^n \rangle \leq G$ is normal and has index n in G. The subgroups H_n are pair-wise non-conjugate and $(m+1)$-generated. On the other hand the “tameness” assumption may well be superfluous. Indeed, according to a long-standing conjecture of W.Thurston (see for example [28]) for a closed hyperbolic 3-manifold
It is easy to see that if \(M \sim_{\pi} M' \) then \(M \) and \(M' \) generate the same subgroup of \(G \). For this reason Nielsen equivalence is a very useful tool for studying the subgroup structure of various groups.

We will say that a group \(G \) is almost torsion-free if any non-trivial element of finite order in \(G \) has finite centralizer. It is obvious that torsion-free groups are almost torsion-free. Moreover, almost torsion-free word-hyperbolic groups behave very similarly to torsion-free ones.

In the present paper we are able to obtain the following generalization of Theorem 1.1.

Theorem 1.3. Let \(G \) be an almost torsion-free word-hyperbolic with finite generating set \(S \) and denote the word metric with respect to \(S \) by \(d_S \). Let \(l \geq 1 \) be such that all \(l \)-generated subgroups of \(G \) are quasiconvex. Let \(k \geq l + 1 \). Then there exists a constant \(C = C(G, S, k, l) \) with the following property.

Suppose that \(g_1, \ldots, g_k \in G \) such that \(U = \langle g_1, \ldots, g_k \rangle \leq G \) is freely indecomposable and not infinite cyclic. Then \(\langle g_1, \ldots, g_k \rangle \) is Nielsen-equivalent to a tuple \((f_1, \ldots, f_k) \) such that
\[
d_S(1, g^{-1} f_i g) \leq C \quad \text{for } i = 1, \ldots, l + 1.
\]

Thus if all \(l \)-generated subgroups of an almost torsion-free hyperbolic group are quasiconvex, for a one-ended subgroup one can make the length of the first \(l + 1 \) generators short by Nielsen transformations and a conjugation. This statement immediately implies the following finiteness results.

Corollary 1.4. Let \(G \) be an almost torsion-free word-hyperbolic group such that all \(l \)-generated subgroups of \(G \) are quasiconvex (where \(l \geq 1 \)). Then \(G \) has only finitely many conjugacy classes of freely indecomposable non-elementary \(l \)-generated subgroups.

Corollary 1.5. Let \(G \) be an almost torsion-free word-hyperbolic group which is locally quasiconvex (that is all finitely generated subgroups of \(G \) are quasiconvex). Then for any \(l \geq 1 \) the group \(G \) has only finitely many conjugacy classes of non-elementary freely indecomposable \(l \)-generated subgroups.

It is worth noting that by the results of Z. Sela [36] and T. Delzant [21] for a fixed one-ended finitely presented group \(H \) and a torsion-free word-hyperbolic group \(G \) there are are only finitely many conjugacy classes of subgroups of \(G \) isomorphic to \(H \). In [20] T. Delzant also shows that for a given finitely presented group \(H \) and word hyperbolic group \(G \) there are only finitely many conjugacy classes of subgroups of \(G \) which are homomorphic images of \(H \) such that the homomorphism does not factor through a group with more than one end.

The class of locally quasiconvex hyperbolic groups is very rich and includes many interesting combinatorial and geometric examples. Free groups and hyperbolic surface groups are locally quasiconvex. If \(M^3 \) is a closed hyperbolic 3-manifold with nonempty convex boundary, then the fundamental group of \(M^3 \) is word-hyperbolic and locally quasiconvex as observed by G. Swarup [38]. Moreover, J. McCammond and D. Wise [32] recently showed that “most” small cancellation groups and one-relator groups are locally quasiconvex as well. In particular, J. McCammond and D. Wise proved [32] that for any non-trivial freely reduced word \(w \in F(X) \) (where \(F(X) \) is a free group of finite rank) there exists an integer \(r_0 \) such that for any \(r \geq r_0 \) the one-relator group \(G = \langle X \mid w^r = 1 \rangle \) is word-hyperbolic and locally quasiconvex. It is well-known that centralizers in one-relator groups with torsion are cyclic and so Theorem 1.4 applies to these groups. P. Schupp [37] recently showed that many hyperbolic Coxeter groups of extra large type are locally quasiconvex as well.

A. Yu. Olshanskii and G. Arzhantseva [2] and independently I. Bumagina [8] constructed large "generic" classes of hyperbolic groups where all \(n \)-generated subgroups are free and quasiconvex. Since every \(1 \)-generated (i.e. cyclic) subgroup in an arbitrary hyperbolic group is quasiconvex, Theorem 1.4 implies Theorem 1.1.

Our proof of Theorem 1.3 shows that the constant \(C(G, S, k, l) \) is effectively computable. This implies that the rank problem for torsion-free locally quasiconvex groups is decidable.
FREELY INDECOMPOSABLE GROUPS ACTING ON HYPERBOLIC SPACES

ILYA KAPOVICH AND RICHARD WEIDMANN

Abstract. We obtain a number of finiteness results for groups acting on hyperbolic spaces and \(\mathbb{E} \)-trees. In particular we show that a torsion-free locally quasiconvex hyperbolic group has only finitely many conjugacy classes of \(n \)-generated one-ended subgroups.

1. Introduction

It is a well-known intuitive fact that many and in a sense most finitely generated subgroups of a given word-hyperbolic group are free. A similar informal statement can be made about groups acting on \(\delta \)-hyperbolic spaces. However, there are few precise finiteness results of this kind. A classic example is the following theorem which was stated by M. Gromov in [24] and proved by T. Delzant in [19].

Theorem 1.1. Let \(G \) be a torsion-free word-hyperbolic group. Then \(G \) contains only finitely many conjugacy classes of one-ended two-generated subgroups.

Unfortunately, the above statement is no longer true for three-generated subgroups. Consider the group

\[G = \langle a, b, t | t^{-1}at = ab^{3}a, t^{-1}bt = ba^{3}b \rangle. \]

Thus \(G \) is an ascending HNN-extension of the free group \(F(a, b) \) via an injective endomorphism \(a \mapsto ab^{3}a, b \mapsto ba^{3}b \). It can be shown using the Combination Theorem of M. Bestvina and M. Feighn [10, 11] that \(G \) is word-hyperbolic. For every integer \(n \geq 1 \) consider the subgroup \(H_n = \langle a, b, t^n \rangle \leq G \). It is not hard to see that each \(H_n \) is a normal subgroup of index \(n \) in \(G \) and thus \(H_n \) is non-elementary and freely indecomposable. Each \(H_n \) is obviously generated by three elements. Since all the subgroups \(H_n \) are normal in \(G \) (for \(n \geq 1 \)), these subgroups are pair-wise non-conjugate and provide infinitely many conjugacy classes of three-generated one-ended subgroups in \(G \). Similar examples can be easily obtained using the Rips construction [34].

In this paper we show that the reason for the failure of Theorem 1.1 for three-generated subgroups in the above example is the fact that \(G \) possesses two-generated non-quasiconvex subgroups. Namely, the subgroup \(F(a, b) \leq G \) is obviously exponentially distorted and thus non-quasiconvex.

Before formulating our main result let us recall the notion of Nielsen equivalence:

Definition 1.2 (Nielsen equivalence). Let \(G \) be a group and let \(M = (g_1, \ldots, g_n) \in G^n \) be an \(n \)-tuple of elements of \(G \). The following moves are called elementary Nielsen moves on \(M \):

(N1) For some \(i, 1 \leq i \leq n \) replace \(g_i \) by \(g_i^{-1} \) in \(M \).
(N2) For some \(i \neq j, 1 \leq i, j \leq n \) replace \(g_i \) by \(g_ig_j \) in \(M \).
(N3) For some \(i \neq j, 1 \leq i, j \leq n \) interchange \(g_i \) and \(g_j \) in \(M \).

We say that \(M = (g_1, \ldots, g_n) \in G^n \) and \(M' = (f_1, \ldots, f_n) \in G^n \) are Nielsen-equivalent, denoted \(M \sim_N M' \), if there is a chain of elementary Nielsen moves which transforms \(M \) to \(M' \).

Date: May 21, 2001.