Let Γ be a graph with one internal node 0 and $n \geq 1$ edges meeting each other at 0. For $x > 0$ and $i \in \{1, 2, \ldots, n\}$ we let $x = (x, i)$ denote the point on Γ located on the i'th edge at the distance x from 0.

Let $X = (X_t)_{t \geq 0}$ be a one-dimensional diffusion on \mathbb{R}_+ hitting 0 with probability one and reflected at 0. A (homogeneous) diffusion spider $X = (X_t)_{t \geq 0}$ is a continuous strong Markov process on Γ which on each edge before hitting 0 behaves as X before hitting 0. When reaching 0 the spider chooses, roughly speaking, an edge with some given probability to continue the movement. A rigorous construction of X can be done using the excursion theory.

In this talk we give an explicit expression for the resolvent kernel of X. Using this we study the excessive functions of X and derive the so called glueing condition to be satisfied at 0. We apply the representation theory (Martin boundary theory) of excessive functions and calculate the representing measure of a given excessive function.

This machinery can be used to solve optimal stopping problems for X. As an example we consider Walsh’s Brownian spider where the diffusion X is a reflecting Brownian motion. We focus on some cases where the reward is continuous at 0 and linear on the edges.

The talk is based on a joint work with Jukka Lempa and Ernesto Mordecki.