Vorbe rechne rungen Funktionen

Schulmathematik: (1) \(y = x^2 \quad (x \in \mathbb{R}) \)

"Rechen vor schri ft": (2) \(g(x) = \frac{1}{x} \quad \mathbb{D} g = \mathbb{R} \setminus \{0\} \)

Physisch - Fragen: z.B. Weg \(s \) nach Zeit \(t \) mit

Ge schwin dig kei t \(v \) : \(s = v \cdot t \)

"funktio nale zu sammen häng

Zwi schen physikalischen größen": (3) \(s = s(t) = v \cdot t \)

Gemeinsame Phänomen: Zuordnung

(1) \(f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x^2 \)

(2) \(g : \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{1}{x} \)

(3) \(s : [0, +\infty) \rightarrow \mathbb{R}, \quad t \mapsto v \cdot t \)

\(\tilde{f} : [0, +\infty) \rightarrow \mathbb{R}, \quad x \mapsto x^2 \)

Dann gilt \(f \neq \tilde{f} \), denn \(\text{Def}(\tilde{f}) \neq \text{Def}(f) \)

[hingegen \(f(x) \neq \tilde{f}(x) \) ließe \(x^2 \neq x^2 \) ?]

Beispiele für Bildmengen:

(1) Bild \((f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R} : y = x^2 \} \)

= \([0, +\infty) \) \(\Rightarrow \) \(y \geq 0 \)

(2) Bild \((g) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R} \setminus \{0\} : y = \frac{1}{x} \} \)

\(= \mathbb{R} \setminus \{0\} \) \(\Rightarrow \) \(x = \frac{1}{y}, \ y \neq 0 \)
(3) \(v \geq 0 \) für \(v \) vorgeben.

\[\text{Bild (c)} = \left\{ y \in \mathbb{R} \mid \exists t \in [0, \infty] : y = t \cdot v \right\} \]

\[= \begin{cases} \{0\} & \text{falls } v = 0 \\ [0, \infty] & \text{falls } v > 0 \end{cases} \]

Allgemein: Zuordnung muss keine rechte Vorschrift sein, sondern irgendeine (aber wohl definierte) Zuordnung.

Beispiele

a) \(X := Y := \) Menge aller Menschen

\[M : X \rightarrow Y, \ x \mapsto (\text{biolog.}) \text{ Mutter von } x \]

\[M(x) = \text{Mutter von } x \]

b) \(X := \) Menge aller Böcke in meinem Regal

\(Y := \) Menge aller Buchstaben

\[B : X \rightarrow Y, \ x \mapsto \text{1. Buchstabe auf 1. Seite} \]

c) \(X := \{1, 2, 3, 4, 5\}, \ Y := \{a, 0, c\} \)

\[f : X \rightarrow Y, \ x \mapsto \begin{cases} a & \text{falls } x \in \{1, 2, 4, 5\} \\ c & \text{falls } x = 3 \end{cases} \]

\[f(1) = a, \ f(2) = a, \ f(3) = c, \ f(4) = a \]

\[f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x^2 \]

\[\text{Def}(f) = \mathbb{R} \]

\[\text{Bild}(f) = [0, \infty] \]
\[g(f) := \begin{cases} (x, x^2) & | x \in \mathbb{R} \leq \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \\ f(x) \end{cases} \]

Nochmal zu Bsp. c):
\[f = \begin{pmatrix} 1, a \end{pmatrix}, \begin{pmatrix} 2, a \end{pmatrix}, \begin{pmatrix} 3, c \end{pmatrix}, \begin{pmatrix} 4, a \end{pmatrix} \]

Visualisierung mit Phildiagrammen:

Beispiele: Behörde
\[f : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto 4 - x^2 \]
\[g : \mathbb{R}, x \mapsto \sqrt{x} \]

1) \(f \circ g : I \) als Bildung von Schrift:
\[(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = 4 - (\sqrt{x})^2 = 4 - x \]
für \(x \in \text{Def}(f \circ g) \);

I. Definitionsbereich

\[
\text{Def}(f \circ g) = \left\{ x \in \text{Def}(g) \mid g(x) \in \text{Def}(f) \right\} = \left\{ x \in [0, \infty) \mid \sqrt{x} \in \mathbb{R} \right\} = [0, \infty)
\]

\(f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 4 - x^2 \)
\(g : [0, \infty) \rightarrow \mathbb{R}, \quad x \mapsto \sqrt{x} \)

2) \(g \circ f \):

\[
(g \circ f)(x) = g(f(x)) = g(4 - x^2) = \sqrt{4 - x^2}
\]

für \(x \in \text{Def}(g \circ f) \);

\[
\text{Def}(g \circ f) = \left\{ x \in \text{Def}(f) \mid f(x) \in \text{Def}(g) \right\} = \left\{ x \in \mathbb{R} \mid 4 - x^2 \in [0, \infty) \right\} = \left\{ x \in \mathbb{R} \mid 4 - x^2 \geq 0 \right\} = [-2, 2]
\]

\[\text{Bsp. e 1.} \quad x \mapsto \frac{1}{\sqrt{x}} \quad (\text{1. reelle Zahlen außer } 0)
\]

\(f(x) = \frac{1}{\sqrt{x}} \quad (\text{1. reelle Zahlen außer } 0)
\)

\(f \) ist nur definiert für \(x \geq 0 \)
\[\frac{1}{y} = \text{ für } y \neq 0 \]

Also: \(x \geq 0 \) sein und \(\sqrt{x} \neq 0 \), also insgesamt: \(x > 0 \)

\[D_{\text{max}}(f) = \mathbb{R}, +\infty \] .

2. \(x \mapsto \log(\log(x)) \) (Erinnere an: \(\log = \ln = \log_e \))

- \(\log(x) \) ist nun definiert für \(x > 0 \).
- Also: \(x > 0 \) sein und \(\log(x) > 0 \)

Für welche \(x > 0 \) gilt \(y = \log(x) > 0 \) ?

\[y = \log(x) \iff e^y = x \]

\[x = e^y \implies \begin{cases} y > 0 \implies y > 0 \\ y < 0 \implies y > 0 \end{cases} \]

Also: \(\log(x) > 0 \iff x > 1 \).

\[D_{\text{max}}(f) = \mathbb{R}, +\infty \] .

Pause bis M: 4 5 Uhr

Beispiel 6.15: \(f(x) = \log(-x^2 + x + 2) \)

Bestimmte maximalen Definitionsbereich und maximales Bild (d.h. Bild der Funktion \(f: D_{\text{max}}(f) \rightarrow \mathbb{R}, x \mapsto f(x) \))
\[D_{\text{max}}: -x^2 + x + 2 > 0 \iff x^2 - x - 2 < 0 \]
\[\iff (x + 1)(x - 2) < 0 \]
\[\iff -1 < x < 2 \]
\[\iff x \in \mathbb{J}_{-1, 2} \]

\[D_{\text{max}}(f) = \{ x \in \mathbb{R} \mid -x^2 + x + 2 > 0 \} = \mathbb{J}_{-1, 2} \]

\[B_{\text{max}}(f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{J}_{-1, 2}: y = \log(-x^2 + x + 2)^4 \}
\]

Brauchen Scheitelpunkt der Parabel, dazu QE:

\[-x^2 + x + 2 = - \left(x^2 - x - 2 \right) = \]

\[\text{QE} = - \left[\left(x - \frac{1}{2} \right)^2 - \frac{9}{4} - 2 \right] = \]

\[= - \left[\left(x - \frac{1}{2} \right)^2 - \frac{9}{4} \right] = - \left(x - \frac{1}{2} \right)^2 + \frac{9}{4} \]

\[B_{\text{max}}(f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{J}_{-1, 2}: y = \log(-x^2 + x + 2)^4 \in \mathbb{J}_{0, \frac{9}{4}} \}
\]

\[= \{ y \in \mathbb{R} \mid \exists z \in \mathbb{J}_{0, \frac{9}{4}}: y = \log(z)^4 \}
\]

\[= \mathbb{J}_{-\infty, \log(\frac{9}{4})} \]

Mehr Bsp.e im Skript.
Beispiele zu Monotonie

1) \(f: \mathbb{R}_1 \rightarrow \mathbb{R}_1, x \mapsto x^2 \) ist streng monoton wachsend.

Beweis: Zu zeigen:

\[\forall x_1, x_2 \in \mathbb{R}_1 : x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \]

Es seien \(x_1, x_2 \in \mathbb{R}_1 \).

Es gelte: \(x_1 < x_2 \).

Zweckmäßigerweise gilt:

\[f(x_1) < f(x_2), \text{ also } x_1^2 < x_2^2 \]

Da beide Faktoren positiv sind.

\(f(x_2) - f(x_1) = x_2^2 - x_1^2 = (x_2 - x_1)(x_2 + x_1) > 0 \)

\(> 0 \), da \(x_2 > x_1 \geq 0 \)

\(x_1 < x_2 \) rech.

Vor. (†)

2) \(g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^2 \) ist weder monoton wachsend noch monoton fallend.

Was heißt: "\(g \) ist nicht monoton wachsend" ?

\[\forall x_1, x_2 \in \mathbb{R} : x_1 < x_2 \Rightarrow g(x_1) \leq g(x_2) \]

also: \(\exists x_1, x_2 \in \mathbb{R} : x_1 < x_2 \land g(x_1) > g(x_2) \)
Wäre wegen einer \(\triangle \) Existenzansage;

and:

if explicit \(\text{gegenbeispiel}^1 \)

Setze \(x_1 := -1 \), \(x_2 := 0 \), dann gilt

\[x_1 < x_2 \quad \text{also} \quad g(x_1) = (-1)^2 = 1 > 0 = g(x_2), \]

\[\text{also} \quad g(x_1) > g(x_2). \]

\[\left(\text{Teilweise beendet} \right) \]

\[g \text{ ist auf } \mathbb{R} \text{ nicht monoton fallend: } \]

(explicit \(\text{gegenbeispiel} \): \(x_1 := 0 \), \(x_2 := 1 \), dann gilt \(x_1 < x_2 \)), also

\[f(x_1) = 0^2 = 0 < 1 = 1^2 = f(x_2), \]

\[\text{also} \quad f(x_1) < f(x_2). \]

\[\left(\text{ganzes beendet} \right) \]

\[\text{andere Notationen: } \square \square \text{ (q.e.d.)} \]

3) \(\sqrt{x} : [0, +\infty] \to \mathbb{R}, x \mapsto \sqrt{x} \)

ist stetig monoton wachsend, also:

\[\forall x_1, x_2 \in [0, +\infty] : x_1 < x_2 \Rightarrow \sqrt{x_1} < \sqrt{x_2}. \]

I. \(\text{Beweis} \): Seien \(x_1, x_2 \in [0, +\infty] \) mit \(x_1 < x_2 \).

\[\left[2.2 : \sqrt{x_1} < \sqrt{x_2} \right] \]

so gilt:

\[\sqrt{x_2} - \sqrt{x_1} = \frac{(\sqrt{x_2} - \sqrt{x_1}) \cdot (\sqrt{x_2} + \sqrt{x_1})}{\sqrt{x_2} + \sqrt{x_1}} = \frac{x_2 - x_1}{\sqrt{x_2} + \sqrt{x_1}} > 0, \]

(\(\text{Erweitern} \))

\(\text{also} \quad \sqrt{x_2} - \sqrt{x_1} > 0. \)
\[\begin{align*}
\text{also } \sqrt{x^2} & < \sqrt{x^2}.
\end{align*} \]

II. Beweis: Aus (1) wissen wir:

\[\forall x, y \in [0, +\infty]: x < y \Rightarrow x^2 < y^2 \]

und:

\[\forall x, y \in [0, +\infty]: x \leq y \Rightarrow x^2 \leq y^2 \]

Kontrapositiv: \[x^2 > y^2 \Rightarrow x > y \]

\[\begin{align*}
\forall x, y \in [0, +\infty]: y^2 > x^2 & \Rightarrow y > x \\
\text{also und zusammen:} & \\
\forall x, y \in [0, +\infty]: x < y & \Rightarrow x^2 < y^2. \\
\end{align*} \]

\[\begin{align*}
\forall a, b \in [0, +\infty]: \sqrt{a} & < \sqrt{b} \Rightarrow a < b. \\
\text{Wegen } \leq \text{ gilt insbesondere: } \forall \text{ ist streng monotone Abbildung.} \\
\end{align*} \]

Prüfen, ob f gerade / ungerade: $f(-x) = ...$

Bsp. 1: \[f: \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x^2 + 4. \]

\[f(-x) = (-x)^2 + 4 = x^2 + 4 = f(x) \]

\Rightarrow f ist gerade.

Bsp. 2: \[f: \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x^3 + 2x. \]
3) \(f: \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x^2 + x \)

\[
 f(-x) = (-x)^2 + (-x) = x^2 - x
\]

\(f \) ist weder gerade noch \(\text{i.e.} \quad x^2 + x \quad \neq \quad x^2 - x \) ungerade; \(\exp\text{pliziel es } \text{Gegens}\text{eispiel:} \)

\(x^* = 2 \), dann ist \(f(x^*) = 6 \)

\(\text{und} \quad f(-x) = 4 - 2 = 2 \neq \frac{1}{2} 6 = f(x) \)

\(\frac{7}{-6} = -f(x) \)