 Zu (1) Sei $f : D \to \mathbb{R}$ streng monoton.

Zeige: f ist injektiv.

Seien $x_1, x_2 \in D$ mit $x_1 \neq x_2$.

[2.2.] $f(x_1) \neq f(x_2)$

O. B. d. A. gelte $x_1 < x_2$. (sonst bereue mir x_1

(Ohne Beschränkung der Allgemeinheit"

(Oft nur: O. E. : "Ohne Einschränkung"

ist f streng monoton wachsend, so gilt $f(x_1) < f(x_2)$,

"F" "fallend" - - - $f(x_1) > f(x_2)$,

in beiden Fällen gilt also $f(x_1) \neq f(x_2)$.

Allgemein: Man erhält den Graph von f^{-1} durch
Allgemein: Worauf Unkenntnisfunktion 2.

Z.B., "Lösen von Gleichungen" lässt sich oft schreiben als:

\[f(x) = y. \]

Lösung: \[y = f^{-1}(x) \], sofern \(f^{-1} \) existiert; dann ist dies die eindeutige Lösung.

\[(3) \]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

ACHTUNG: \[f^{-1}(x) \neq \frac{1}{f(x)} \text{ i.A.} \]

"Im Allgemeinen"

Z.B. \[f(x) = x^2 \quad (x > 0) \]

\[f^{-1}(x) = \sqrt{x} \quad \text{also} \quad \frac{1}{f(x)} = \frac{1}{x^2} \]

(4) 2.2.: \(\forall x_1, x_2 \in \mathbb{R} \setminus \{1\} : f(x_1) = f(x_2) \Rightarrow x_1 = x_2. \)

Seien \(x_1, x_2 \in \mathbb{R} \setminus \{1\} \) mit \(f(x_1) = f(x_2). \)

2.2.: \(x_1 = x_2 \).

Es gilt also: \[\frac{x_1 - 1}{x_1 + 1} = f(x_1) = f(x_2) = \frac{x_2 - 1}{x_2 + 1}. \]
\[x_1x_2 - x_2 + x_1 - 1 = (x_1 - 1)(x_2 + 1) = (x_2 - 1)(x_1 + 1) = x_1x_2 - x_1 + x_2 - 1 \]

\[
\begin{align*}
\text{also } x_1 - x_2 &= x_2 - x_1, \quad \text{also } 2x_1 &= 2x_2, \quad \text{also } \\
x_1 &= x_2.
\end{align*}
\]

2. Bestimme Bild \((f)\) und \(f^{-1}\):

Löse die Gleichung \(y = f(x)\) nach \(x\) auf, also:

\[y = \frac{x - 4}{x + 4} \quad \text{für } x \neq -4 \quad \text{nach } x \text{ anlösen!} \]

Rechnerisch:

\[y = \frac{x - 4}{x + 4} \quad \Rightarrow \quad y(x + 4) = x - 4 \quad \Rightarrow \quad yx + y = x - 4 \]

\(y\) fest, Bruchlinie:

\[\Rightarrow \quad yx - x = -1 - y \quad \Rightarrow \quad x(y - 1) = -(1 + y) \]

Gleichung in \(x\):

\[\Rightarrow \quad x = \frac{1 + y}{y - 1} = \frac{1 + y}{1 - y} \]

für \(y \neq 1\)

Was ist mit \(y = 4\) ?

\[y = 4 \quad \Rightarrow \quad 4 = \frac{x - 4}{x + 4} \quad \Rightarrow \quad x + 4 = x - 4 \quad \Rightarrow \quad 1 = -1 \]

\(\therefore\) also: \(4 \notin \) Bild \((f)\)

Insgesamt ist damit gezeigt:

\[\text{Bild } (f) = \mathbb{R} \setminus \{4\}, \quad \text{und die Umkehrfunktion ist gegeben durch: } \quad y \mapsto \frac{1 + y}{1 - y} \]

bew.
\[f^{-1}: \mathbb{R} \setminus \{1,4\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{4+x}{4-x} \]

Und es gilt: \(\text{Bild}(f^{-1}) = \text{Def}(f) = \mathbb{R} \setminus \{1,4\} \)

Dann gilt \(f^{-1} \circ f \) für alle \(x \in \mathbb{R} \setminus \{1,4\} : \)

\[f^{-1}(f(x)) = f^{-1}\left(\frac{x-4}{x+4}\right) = \frac{1 + \frac{x-4}{x+4}}{1 - \frac{x-4}{x+4}} \cdot \frac{x+4}{x+4} = \frac{x+1 + (x-4)}{x+1 - (x-4)} = \frac{2x}{2} = x. \]

\[\text{zu (2)} \quad f(x) = \frac{x-4}{x+4} = \frac{x+1-2}{x+4} = \]

\[= \frac{x+1}{x+4} - \frac{2}{x+4} = 1 - \frac{2}{x+4} \]

\[\text{Pause bis } \text{11:28 Uhr} \]

\[f_a \text{ ist linear: } \]

\[f_a(x+y) = a \cdot (x+y) = a \cdot x + a \cdot y = f_a(x) + f_a(y) \]

und \(f_a(c \cdot x) = a \cdot (c \cdot x) = c \cdot (a \cdot x) = c \cdot f_a(x) \)

für alle \(x, y, c \in \mathbb{R} \).

Gezeigt damit: \((2) \Rightarrow (1) \).

Beweis: \((1) \Rightarrow (2) ; \) \[\text{"Schnitzelkiff"} \]

Wenn \(f = f_a \).
Es gelte: \(f \) ist linear.

Setze \(\alpha := f(1) \).

Beweis: \(f = f_a \), also:
\[
\forall x \in \mathbb{R}: f(x) = \alpha \cdot x.
\]

Sei \(x \in \mathbb{R} \), dann gilt:
\[
f(x) = f(x \cdot 1) = x \cdot f(1) = x \cdot \alpha = \alpha \cdot x.
\]

(\(\alpha \) in Def. "linear"

Summenzeichen: Für Zahlen \(c_0, \ldots, c_n \in \mathbb{R} : \)
\[
c_0 + c_1 + \ldots + c_n =: \sum_{j=0}^{n} c_j \quad \text{Summand} \quad \text{Laufindex} \quad \text{Startwrt}
\]

Polynomdivision (\(\triangleq \) Teilen mit Rest): \((x^3 - x^2 + 2x - 2) : (x^2 - 3x + 2) = x + 2 \quad \text{Rest} \quad 6x - 6 \)

\[
\begin{align*}
(x^3 - x^2 + 2x) & \quad \leftarrow x \cdot (x^2 - 3x + 2) \\
- (x^3 - 3x^2 + 2x) & \quad \leftarrow 2 \cdot (x^2 - 3x + 2) \\
2x^2 & - 2 \\
- (2x^2 - 6x + 4) & \quad \leftarrow 2 \cdot (x^2 - 3x + 2) \\
6x & - 6
\end{align*}
\]

Bemerkung:
\[(x^3 - x^2 + 2x - 2) = (x+2) \cdot (x^2 - 3x + 2) + (6x - 6) \]
\[
\frac{x^3 - x^2 + 2x - 2}{x^2 - 3x + 2} = x + 2 + \frac{6x - 6}{x^2 - 3x + 2}
\]

Vgl. Teilen mit Rest:

\[23 : 4 = 5 \text{ Rest } 3 \]

bedeutet: \[23 = 5 \cdot 4 + 3 \]

\[\frac{23}{4} = 5 + \frac{3}{4} \]

\[
(x^\varphi)^{-\frac{1}{\varphi}} = x^{-\frac{1}{\varphi}} = x^\varphi \quad \text{ für } \varphi \neq 0
\]

3.11 Trigonometrische Funktionen

Herausformung & Definition

Rechtwinkliges \(\triangle \):

\[
\text{Sinus} (\alpha) := \frac{a}{c} \quad \text{Tangens} (\alpha) := \frac{a}{b} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\text{Sinus} (\alpha)}{\text{Cosinus} (\alpha)}
\]

\[
\cosinus (\alpha) := \frac{b}{c} \quad \text{Cotangens} (\alpha) := \frac{b}{a} = \frac{1}{\text{Tangens} (\alpha)}
\]

So nur möglich für Winkel \(0^\circ < \alpha^\circ < 90^\circ \)

Erweiterung für beliebige \(\alpha \in \mathbb{R} \) über den Einheitskreis
Bogenlänge $b \equiv \alpha$ „im Bogenmaß“.

$T_0: = \frac{\alpha}{2} \cdot \text{Umfang Einheitskreises} = \text{Flächeninhalt} \quad \Rightarrow \quad$

(1) „trigonometrische Pythagoras“

\[
\cos^2(x) + \sin^2(x) = 1^2 = 1
\]

\[
\sin(\alpha) = \frac{\tau}{k}
\]

\[
\cos(\beta) = \frac{k}{1} = k
\]

\[
\tau = \sin(\alpha) \cdot k = \sin(\alpha) \cdot \cos(\beta)
\]

\[
(\delta + \alpha^*) + \beta = \frac{\pi}{2}
\]

\[
(\alpha + \beta) + \delta = \frac{\pi}{2}
\]

\[
\alpha^* - \alpha = 0 \quad \Rightarrow \quad \alpha^* = \alpha
\]

\[
\cos(\alpha) = \cos(\alpha^*) = \frac{s}{\tau} \quad \Rightarrow \quad S = t \cdot \cos(\alpha) = \cos(\alpha) \cdot \sin(\beta)
\]

\[
\sin(\beta) = \frac{t}{1} = t
\]
\[
\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)
\]

\[
\cos(\alpha) = \frac{q}{k} \implies q = k \cdot \cos(\alpha) = \frac{\cos(\alpha)\cos(\beta)}{\cos(\beta)}
\]

\[
\sin(\alpha) = \frac{p}{t} \implies p = t \cdot \sin(\alpha) = \sin(\alpha) \cdot \sin(\beta) = \sin(\beta)
\]

\[
\cos(\alpha + \beta) = q - p = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)
\]

\[30^\circ\]

\[
\sin(30^\circ) = \frac{1}{2}
\]

\[
\cos^2(30^\circ) = 1 - \sin^2(30^\circ) = 1 - \frac{1}{4} = \frac{3}{4}
\]

\[
\cos(30^\circ) = \frac{\sqrt{3}}{2}
\]

\[45^\circ\]

\[\text{gleichschenklig}\]

\[s = \sin(45^\circ) = \cos(45^\circ) = \frac{\sqrt{2}}{2}\]

\[\text{mg. Pyth.}: \quad l = s^2 + s^2 = 2s^2 \implies \quad s = \frac{l}{\sqrt{2}}\]

\[15^\circ \approx \frac{\pi}{12}, \quad c = \cos\left(\frac{\pi}{12}\right)\]
\[30^\circ = 2 \cdot 15^\circ = 2x \]

\[C^2 = \frac{1}{2} \cdot (\cos (30^\circ) + 1) = \frac{1}{2} \cdot \left(\frac{\sqrt{3}}{2} + 1 \right) \]

\[= \frac{1}{4} \left(\sqrt{3} + 2 \right) \]

\[\therefore C = \sqrt{\frac{1}{4} \left(\sqrt{3} + 2 \right)} = \frac{1}{2} \sqrt{\sqrt{3} + 2} \]